|
|
A093355
|
|
Beginning with 2, primes such that the n-th partial sum is an n-th power.
|
|
3
|
|
|
2, 2, 23, 229, 229344751, 252545297, 9094638268087, 1668626479841609, 4673740355384057, 138203643993672967, 564009841283188392949, 2662112366008762371083, 2372500135043479785725819
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Requiring a(n+1) > a(n) leads to the finite sequence A073860. Not allowing repetition leads to A073698. - M. F. Hasler, Apr 07 2009
|
|
LINKS
|
|
|
EXAMPLE
|
2+2 = 4 = 2^2, 2+2+23 = 27 = 3^3.
|
|
PROG
|
(PARI) s=0; for( n=1, 999, t=floor(sqrtn(s, n)); until( isprime( t++^n-s), ); print1( t^n-s, ", "); s=t^n) \\ M. F. Hasler, Apr 07 2009
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|