login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206806
Sum_{0<j<k<=n} s(k)-s(j), where s(j)=A002620(j) is the j-th quarter-square.
3
1, 4, 13, 30, 62, 112, 190, 300, 455, 660, 931, 1274, 1708, 2240, 2892, 3672, 4605, 5700, 6985, 8470, 10186, 12144, 14378, 16900, 19747, 22932, 26495, 30450, 34840, 39680, 45016, 50864, 57273, 64260, 71877, 80142, 89110, 98800, 109270, 120540, 132671, 145684
OFFSET
2,2
COMMENTS
Partial sums of A049774. For a guide to related sequences, see A206817.
FORMULA
From Wesley Ivan Hurt, Jul 10 2014: (Start)
a(n) = Sum_{i=1..n} i * (n-i) * (i-ceiling((i-1)/2)).
a(n) = (108 - 36n - n^2 + n^4 + (70n - 266) * ceiling((3 - n)/2) - (42n - 234) * ceiling((3 - n)/2)^2 + (8n - 88) * ceiling((3 - n)/2)^3 + 12 * ceiling((3 - n)/2)^4 - 4n * floor(n/2) - (12n - 12) * floor(n/2)^2 - (8n - 24) * floor(n/2)^3 + 12 * floor(n/2)^4) / 12. (End)
a(n) = (n*(1+3*(-1)^n-2*n+2*n^2+2*n^3))/48. - Colin Barker, Jul 10 2014
G.f.: -x^2*(2*x^2+x+1) / ((x-1)^5*(x+1)^2). - Colin Barker, Jul 10 2014
MAPLE
A206806:=n->add(i*(n-i)*(i-ceil((i-1)/2)), i=1..n): seq(A206806(n), n=2..50); # Wesley Ivan Hurt, Jul 10 2014
MATHEMATICA
s[k_] := Floor[k/2]*Ceiling[k/2]; t[1] = 0;
Table[s[k], {k, 1, 20}] (* A002620 *)
p[n_] := Sum[s[k], {k, 1, n}];
c[n_] := n*s[n] - p[n];
t[n_] := t[n - 1] + (n - 1) s[n] - p[n - 1]
Table[c[n], {n, 2, 50}] (* A049774 *)
f = Flatten[Table[t[n], {n, 2, 50}]] (* A206806 *)
Table[Sum[i (n - i) (i - Ceiling[(i - 1)/2]), {i, n}], {n, 2, 50}] (* Wesley Ivan Hurt, Jul 10 2014 *)
CoefficientList[Series[-(2 x^2 + x + 1)/((x - 1)^5 (x + 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 10 2014 *)
PROG
(Magma) [(108-36*n-n^2+n^4+(70*n-266)*Ceiling((3-n)/2)-(42*n-234)*Ceiling((3-n)/2)^2+(8*n-88)*Ceiling((3-n)/2)^3+12*Ceiling((3-n)/2)^4-4*n*Floor(n/2)-(12*n-12)*Floor(n/2)^2-(8*n-24)*Floor(n/2)^3+12*Floor(n/2)^4)/12: n in [2..50]]; // Wesley Ivan Hurt, Jul 10 2014
(PARI) vector(100, n, ((n+1)*(1+3*(-1)^(n+1)-2*(n+1)+2*(n+1)^2+2*(n+1)^3))/48) \\ Colin Barker, Jul 10 2014
(PARI) Vec(-x^2*(2*x^2+x+1)/((x-1)^5*(x+1)^2) + O(x^100)) \\ Colin Barker, Jul 10 2014
(Sage) [sum([sum([floor(k^2/4)-floor(j^2/4) for j in range(1, k)]) for k in range(2, n+1)]) for n in range(2, 44)] # Danny Rorabaugh, Apr 18 2015
CROSSREFS
Sequence in context: A138989 A254830 A071400 * A022913 A232228 A218213
KEYWORD
nonn,easy,changed
AUTHOR
Clark Kimberling, Feb 15 2012
STATUS
approved