OFFSET
1,1
COMMENTS
The joint ranking is for j >= 1 and k >= 1, so that the sets {2^j} and {3^k} are disjoint.
FORMULA
a(n) = n + floor(n*log_2(3)).
A206805(n) = n + floor(n*log_3(2)).
a(n) = n + A056576(n). - Michel Marcus, Dec 12 2023
a(n) = A098294(n) + 2*n - 1. - Ruud H.G. van Tol, Jan 22 2024
EXAMPLE
MATHEMATICA
f[n_] := 2^n; g[n_] := 3^n; z = 200;
c = Table[f[n], {n, 1, z}]; s = Table[g[n], {n, 1, z}];
j = Sort[Union[c, s]];
p[n_] := Position[j, f[n]]; q[n_] := Position[j, g[n]];
Flatten[Table[p[n], {n, 1, z}]] (* A206805 *)
Table[n + Floor[n*Log[3, 2]], {n, 1, 50}] (* A206805 *)
Flatten[Table[q[n], {n, 1, z}]] (* this sequence *)
Table[n + Floor[n*Log[2, 3]], {n, 1, 50}] (* this sequence as a table *)
PROG
(PARI) a(n) = logint(3^n, 2) + n; \\ Ruud H.G. van Tol, Dec 10 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 16 2012
STATUS
approved