login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Position of 3^n when {2^j} and {3^k} are jointly ranked; complement of A206805.
2

%I #35 Jan 25 2024 07:09:01

%S 2,5,7,10,12,15,18,20,23,25,28,31,33,36,38,41,43,46,49,51,54,56,59,62,

%T 64,67,69,72,74,77,80,82,85,87,90,93,95,98,100,103,105,108,111,113,

%U 116,118,121,124,126,129,131,134,137,139,142,144,147,149,152,155

%N Position of 3^n when {2^j} and {3^k} are jointly ranked; complement of A206805.

%C The joint ranking is for j >= 1 and k >= 1, so that the sets {2^j} and {3^k} are disjoint.

%F a(n) = n + floor(n*log_2(3)).

%F A206805(n) = n + floor(n*log_3(2)).

%F a(n) = n + A056576(n). - _Michel Marcus_, Dec 12 2023

%F a(n) = A098294(n) + 2*n - 1. - _Ruud H.G. van Tol_, Jan 22 2024

%e The joint ranking begins with 2,3,4,8,9,16,27,32,64,81,128,243,256, so that

%e A206805 = (1,3,4,6,8,9,11,13,...)

%e A206807 = (2,5,7,10,12,...)

%t f[n_] := 2^n; g[n_] := 3^n; z = 200;

%t c = Table[f[n], {n, 1, z}]; s = Table[g[n], {n, 1, z}];

%t j = Sort[Union[c, s]];

%t p[n_] := Position[j, f[n]]; q[n_] := Position[j, g[n]];

%t Flatten[Table[p[n], {n, 1, z}]] (* A206805 *)

%t Table[n + Floor[n*Log[3, 2]], {n, 1, 50}] (* A206805 *)

%t Flatten[Table[q[n], {n, 1, z}]] (* this sequence *)

%t Table[n + Floor[n*Log[2, 3]], {n, 1, 50}] (* this sequence as a table *)

%o (PARI) a(n) = logint(3^n, 2) + n; \\ _Ruud H.G. van Tol_, Dec 10 2023

%Y Cf. A006899, A056576, A098294, A206805, A122437.

%K nonn

%O 1,1

%A _Clark Kimberling_, Feb 16 2012