login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206817
Sum_{0<j<k<=n} (k!-j!).
10
1, 10, 73, 520, 3967, 33334, 309661, 3166468, 35416555, 430546642, 5655609529, 79856902816, 1206424711303, 19419937594990, 331860183278677, 6000534640290364, 114462875817046051, 2297294297649673738, 48394006967070653425
OFFSET
2,2
COMMENTS
In the following guide to related sequences,
c(n) = Sum_{0<j<n} s(n)-s(j),
t(n) = Sum_{0<j<k<=n} s(k)-s(j).
s(k).................c(n)........t(n)
k....................A000217.....A000292
k^2..................A016061.....A004320
k^3..................A206808.....A206809
k^4..................A206810.....A206811
k!...................A206816.....A206817
prime(k).............A152535.....A062020
prime(k+1)...........A185382.....A206803
2^(k-1)..............A000337.....A045618
k(k+1)/2.............A007290.....A034827
k-th quarter-square..A049774.....A206806
LINKS
FORMULA
a(n) = a(n-1)+(n-1)s(n)-p(n-1), where s(n) = n! and p(k) = 1!+2!+...+k!.
a(n) = Sum_{k=2..n} A206816(k).
EXAMPLE
a(3) = (2-1) + (6-1) + (6-2) = 10.
MATHEMATICA
s[k_] := k!; t[1] = 0;
p[n_] := Sum[s[k], {k, 1, n}];
c[n_] := n*s[n] - p[n];
t[n_] := t[n - 1] + (n - 1) s[n] - p[n - 1];
Table[c[n], {n, 2, 32}] (* A206816 *)
Flatten[Table[t[n], {n, 2, 20}]] (* A206817 *)
PROG
(Sage) [sum([sum([factorial(k)-factorial(j) for j in range(1, k)]) for k in range(2, n+1)]) for n in range(2, 21)] # Danny Rorabaugh, Apr 18 2015
(PARI) a(n)=sum(j=1, n, j!*(2*j-n-1)) \\ Charles R Greathouse IV, Oct 11 2015
(PARI) a(n)=my(t=1); sum(j=1, n, t*=j; t*(2*j-n-1)) \\ Charles R Greathouse IV, Oct 11 2015
CROSSREFS
Sequence in context: A243878 A200580 A181678 * A159687 A199556 A044197
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 12 2012
STATUS
approved