login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum_{0<j<k<=n} (k!-j!).
10

%I #21 Oct 11 2015 02:55:02

%S 1,10,73,520,3967,33334,309661,3166468,35416555,430546642,5655609529,

%T 79856902816,1206424711303,19419937594990,331860183278677,

%U 6000534640290364,114462875817046051,2297294297649673738,48394006967070653425

%N Sum_{0<j<k<=n} (k!-j!).

%C In the following guide to related sequences,

%C c(n) = Sum_{0<j<n} s(n)-s(j),

%C t(n) = Sum_{0<j<k<=n} s(k)-s(j).

%C s(k).................c(n)........t(n)

%C k....................A000217.....A000292

%C k^2..................A016061.....A004320

%C k^3..................A206808.....A206809

%C k^4..................A206810.....A206811

%C k!...................A206816.....A206817

%C prime(k).............A152535.....A062020

%C prime(k+1)...........A185382.....A206803

%C 2^(k-1)..............A000337.....A045618

%C k(k+1)/2.............A007290.....A034827

%C k-th quarter-square..A049774.....A206806

%H Danny Rorabaugh, <a href="/A206817/b206817.txt">Table of n, a(n) for n = 2..400</a>

%F a(n) = a(n-1)+(n-1)s(n)-p(n-1), where s(n) = n! and p(k) = 1!+2!+...+k!.

%F a(n) = Sum_{k=2..n} A206816(k).

%e a(3) = (2-1) + (6-1) + (6-2) = 10.

%t s[k_] := k!; t[1] = 0;

%t p[n_] := Sum[s[k], {k, 1, n}];

%t c[n_] := n*s[n] - p[n];

%t t[n_] := t[n - 1] + (n - 1) s[n] - p[n - 1];

%t Table[c[n], {n, 2, 32}] (* A206816 *)

%t Flatten[Table[t[n], {n, 2, 20}]] (* A206817 *)

%o (Sage) [sum([sum([factorial(k)-factorial(j) for j in range(1,k)]) for k in range(2,n+1)]) for n in range(2,21)] # _Danny Rorabaugh_, Apr 18 2015

%o (PARI) a(n)=sum(j=1,n,j!*(2*j-n-1)) \\ _Charles R Greathouse IV_, Oct 11 2015

%o (PARI) a(n)=my(t=1); sum(j=1,n,t*=j; t*(2*j-n-1)) \\ _Charles R Greathouse IV_, Oct 11 2015

%Y Cf. A000142, A206816.

%K nonn

%O 2,2

%A _Clark Kimberling_, Feb 12 2012