login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045618
Partial sums of A000337(n+4), n >= 0.
30
1, 6, 23, 72, 201, 522, 1291, 3084, 7181, 16398, 36879, 81936, 180241, 393234, 851987, 1835028, 3932181, 8388630, 17825815, 37748760, 79691801, 167772186, 352321563, 738197532, 1543503901, 3221225502, 6710886431, 13958643744
OFFSET
0,2
COMMENTS
Convolution of A000225(n+1), n >= 0, (partial sums of powers of 2).
Sum of diameters of all nonempty subsets of {1, 2, ..., n+2}. - Charles R Greathouse IV, Nov 21 2011
a(n) is the sum of all the ways of adding the k-tuples of the terms found in A000079(0) to A000079(n). For a(2) the result is (1)+(2)+(4)=7; (1+2)+(2+4)=9; (1+2+4)=7 with 7+9+7=23. - J. M. Bergot, Jun 19 2017
LINKS
Brian Nakamura, Elizabeth Yang, Competition graphs induced by permutations, arXiv preprint arXiv:1503.05617 [math.CO], 2015.
A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
FORMULA
a(n) = n + 5 + (n-1)*2^(n+2).
G.f.: 1/((1-2*x)*(1-x))^2.
a(n) = Sum_{i=0...n+1} (2^(n+2-i) - 1)*(2^i - 1). - J. M. Bergot, Sep 16 2017
a(n) = Sum_{k=0..n+2} Sum_{i=0..n+2} (i-k) * C(n-k+2,i). - Wesley Ivan Hurt, Sep 19 2017
a(n) = 4*a(n-1) - 4*a(n-2) + n + 1, with a(-1) = a(-2) = 0. - Jesse Fiedler, Aug 20 2019
E.g.f.: exp(x)*(5 + x + exp(x)*(- 4 + 8*x)). - Stefano Spezia, Aug 20 2019
MATHEMATICA
Table[Sum[(-1)^(n - k) k (-1)^(n - k) Binomial[n + 2, k + 2], {k, 0, n}], {n, 1, 28}] (* Zerinvary Lajos, Jul 08 2009 *)
Rest[Accumulate[LinearRecurrence[{5, -8, 4}, {0, 1, 5}, 40]]] (* Harvey P. Dale, Dec 19 2011 *)
CoefficientList[Series[1/((1 - x)^2 (1 - 2 x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 22 2014 *)
LinearRecurrence[{6, -13, 12, -4}, {1, 6, 23, 72}, 28] (* Ray Chandler, Aug 03 2015 *)
PROG
(PARI) a(n)=(n-1)<<(n+2)+n+5 \\ Charles R Greathouse IV, Nov 21 2011
CROSSREFS
Cf. A000337.
Sequence in context: A332081 A213557 A273386 * A038737 A038797 A136530
KEYWORD
easy,nonn
STATUS
approved