OFFSET
0,2
COMMENTS
Convolution of A000225(n+1), n >= 0, (partial sums of powers of 2).
Sum of diameters of all nonempty subsets of {1, 2, ..., n+2}. - Charles R Greathouse IV, Nov 21 2011
a(n) is the sum of all the ways of adding the k-tuples of the terms found in A000079(0) to A000079(n). For a(2) the result is (1)+(2)+(4)=7; (1+2)+(2+4)=9; (1+2+4)=7 with 7+9+7=23. - J. M. Bergot, Jun 19 2017
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Brian Nakamura, Elizabeth Yang, Competition graphs induced by permutations, arXiv preprint arXiv:1503.05617 [math.CO], 2015.
A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
FORMULA
a(n) = n + 5 + (n-1)*2^(n+2).
G.f.: 1/((1-2*x)*(1-x))^2.
a(n) = Sum_{i=0...n+1} (2^(n+2-i) - 1)*(2^i - 1). - J. M. Bergot, Sep 16 2017
a(n) = Sum_{k=0..n+2} Sum_{i=0..n+2} (i-k) * C(n-k+2,i). - Wesley Ivan Hurt, Sep 19 2017
a(n) = 4*a(n-1) - 4*a(n-2) + n + 1, with a(-1) = a(-2) = 0. - Jesse Fiedler, Aug 20 2019
E.g.f.: exp(x)*(5 + x + exp(x)*(- 4 + 8*x)). - Stefano Spezia, Aug 20 2019
MATHEMATICA
Table[Sum[(-1)^(n - k) k (-1)^(n - k) Binomial[n + 2, k + 2], {k, 0, n}], {n, 1, 28}] (* Zerinvary Lajos, Jul 08 2009 *)
Rest[Accumulate[LinearRecurrence[{5, -8, 4}, {0, 1, 5}, 40]]] (* Harvey P. Dale, Dec 19 2011 *)
CoefficientList[Series[1/((1 - x)^2 (1 - 2 x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 22 2014 *)
LinearRecurrence[{6, -13, 12, -4}, {1, 6, 23, 72}, 28] (* Ray Chandler, Aug 03 2015 *)
PROG
(PARI) a(n)=(n-1)<<(n+2)+n+5 \\ Charles R Greathouse IV, Nov 21 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved