login
A213557
Antidiagonal sums of the convolution array A213590.
4
1, 6, 23, 70, 184, 438, 971, 2042, 4125, 8076, 15424, 28876, 53189, 96670, 173747, 309362, 546456, 958690, 1672015, 2901170, 5011321, 8621976, 14781888, 25263000, 43053769, 73186038, 124119311, 210055582, 354806200, 598245006
OFFSET
1,2
FORMULA
a(n) = 5*a(n-1) - 8*a(n-2) + 2*a(n-3) + 6*a(n-4) - 4*a(n-5) - a(n-6) + a(n-7).
G.f.: f(x)/g(x), where f(x) = x*(1 + x + x^2 + x^3) and g(x) = (1 - x)^3 (1 - x - x^2)^2.
a(n) = n*Fibonacci(n+7) - 2*Fibonacci(n+9) + 2*n^2 + 20*n + 68. - G. C. Greubel, Jul 06 2019
MATHEMATICA
(* First program *)
b[n_]:= n^2; c[n_]:= Fibonacci[n];
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213590 *)
r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *)
Table[T[n, n], {n, 1, 40}] (* A213504 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213557 *)
(* Second program *)
With[{F = Fibonacci}, Table[n*F[n+7] -2*F[n+9] +2*(n^2+10*n+34), {n, 40}]] (* G. C. Greubel, Jul 06 2019 *)
PROG
(PARI) vector(40, n, f=fibonacci; n*f(n+7) -2*f(n+9) +2*(n^2+10*n+34)) \\ G. C. Greubel, Jul 06 2019
(Magma) F:=Fibonacci; [n*F(n+7) -2*F(n+9) +2*(n^2+10*n+34): n in [1..40]]; // G. C. Greubel, Jul 06 2019
(Sage) f=fibonacci; [n*f(n+7) -2*f(n+9) +2*(n^2+10*n+34) for n in (1..40)] # G. C. Greubel, Jul 06 2019
(GAP) F:=Fibonacci;; List([1..40], n-> n*F(n+7) -2*F(n+9) +2*(n^2+10*n+ 34)) # G. C. Greubel, Jul 06 2019
CROSSREFS
Sequence in context: A281424 A005745 A332081 * A273386 A045618 A038737
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 19 2012
STATUS
approved