login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213558
Rectangular array: (row n) = b**c, where b(h) = h^3, c(h) = (n-1+h)^3, n>=1, h>=1, and ** = convolution.
4
1, 16, 8, 118, 91, 27, 560, 496, 280, 64, 2003, 1878, 1366, 637, 125, 5888, 5672, 4672, 2944, 1216, 216, 14988, 14645, 12917, 9542, 5446, 2071, 343, 34176, 33664, 30920, 25088, 17088, 9088, 3256, 512, 71445, 70716, 66620, 57359, 43535
OFFSET
1,2
COMMENTS
Principal diagonal: A213559
Antidiagonal sums: A213560
Row 1, (1,8,27,...)**(1,8,27,...): A145216
For a guide to related arrays, see A213500.
FORMULA
T(n,k) = 8*T(n,k-1) - 28*T(n,k-2) + 56*T(n,k-3) - 70*T(n,k-4) + 56*T(n,k-5) - 28*T(n,k-6) + 8*T(n,k-7) - T(n,k-8).
G.f. for row n: f(x)/g(x), where f(x) = n^3 + ((n + 1)^3)*x + (-8*n^3 + 6*n^2 + 12*n + 8)*x^2 + (8*n^3 - 18*n^2 + 18)*x^3 - ((n - 2)^3)*x^4 - ((n + 1)^3)*x^5 and g(x) = (1 - x)^8.
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1.....16.....118....560.....2003
8.....91.....496....1878....5672
27....280....1366...4672....12917
64....637....2944...9542....25088
125...1216...5446...17088...43535
MATHEMATICA
b[n_] := n^3; c[n_] := n^3
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213558 *)
d = Table[t[n, n], {n, 1, 40}] (* A213559 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213560 *)
CROSSREFS
Cf. A213500.
Sequence in context: A258160 A040243 A299584 * A164703 A153724 A183396
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jun 17 2012
STATUS
approved