login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258160 a(n) = 8*Lucas(n). 7
16, 8, 24, 32, 56, 88, 144, 232, 376, 608, 984, 1592, 2576, 4168, 6744, 10912, 17656, 28568, 46224, 74792, 121016, 195808, 316824, 512632, 829456, 1342088, 2171544, 3513632, 5685176, 9198808, 14883984, 24082792, 38966776, 63049568, 102016344, 165065912 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..300

Tanya Khovanova, Recursive Sequences: a(n) = a(n-1)+a(n-2).

Index entries for linear recurrences with constant coefficients, signature (1,1).

FORMULA

G.f.: 8*(2 - x)/(1 - x - x^2).

a(n)   = Fibonacci(n+6) - Fibonacci(n-6), where Fibonacci(-6..-1) = -8, 5, -3, 2, -1, 1 (see similar sequences listed in Crossrefs).

a(n)   = Lucas(n+4) + Lucas(n) + Lucas(n-4), where Lucas(-4..-1) = 7, -4, 3, -1.

a(n)   = a(n-1) + a(n-2) for n>1, a(0)=16, a(1)=8.

a(n)   = 2*A156279(n).

a(n+1) = 4*A022112(n).

MATHEMATICA

Table[8 LucasL[n], {n, 0, 40}]

CoefficientList[Series[8*(2 - x)/(1 - x - x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 21 2017 *)

PROG

(Sage) [8*lucas_number2(n, 1, -1) for n in (0..40)]

(MAGMA) [8*Lucas(n): n in [0..40]];

(PARI) a(n)=([0, 1; 1, 1]^n*[16; 8])[1, 1] \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. A022112, A039834, A156279.

Cf. A022091: 8*Fibonacci(n).

Cf. A022352: Fibonacci(n+6) + Fibonacci(n-6).

Cf. sequences with the formula Fibonacci(n+k)-Fibonacci(n-k): A000045 (k=1); A000032 (k=2); A022087 (k=3); A022379 (k=4, without initial 6); A022345 (k=5); this sequence (k=6); A022363 (k=7).

Sequence in context: A102270 A102272 A083536 * A040243 A299584 A213558

Adjacent sequences:  A258157 A258158 A258159 * A258161 A258162 A258163

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, May 22 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 01:17 EST 2018. Contains 299357 sequences. (Running on oeis4.)