The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258160 a(n) = 8*Lucas(n). 7
 16, 8, 24, 32, 56, 88, 144, 232, 376, 608, 984, 1592, 2576, 4168, 6744, 10912, 17656, 28568, 46224, 74792, 121016, 195808, 316824, 512632, 829456, 1342088, 2171544, 3513632, 5685176, 9198808, 14883984, 24082792, 38966776, 63049568, 102016344, 165065912 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Bruno Berselli, Table of n, a(n) for n = 0..300 Tanya Khovanova, Recursive Sequences: a(n) = a(n-1)+a(n-2). Index entries for linear recurrences with constant coefficients, signature (1,1). FORMULA G.f.: 8*(2 - x)/(1 - x - x^2). a(n)   = Fibonacci(n+6) - Fibonacci(n-6), where Fibonacci(-6..-1) = -8, 5, -3, 2, -1, 1 (see similar sequences listed in Crossrefs). a(n)   = Lucas(n+4) + Lucas(n) + Lucas(n-4), where Lucas(-4..-1) = 7, -4, 3, -1. a(n)   = a(n-1) + a(n-2) for n>1, a(0)=16, a(1)=8. a(n)   = 2*A156279(n). a(n+1) = 4*A022112(n). MATHEMATICA Table[8 LucasL[n], {n, 0, 40}] CoefficientList[Series[8*(2 - x)/(1 - x - x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 21 2017 *) PROG (Sage) [8*lucas_number2(n, 1, -1) for n in (0..40)] (MAGMA) [8*Lucas(n): n in [0..40]]; (PARI) a(n)=([0, 1; 1, 1]^n*[16; 8])[1, 1] \\ Charles R Greathouse IV, Oct 07 2015 CROSSREFS Cf. A022112, A039834, A156279. Cf. A022091: 8*Fibonacci(n). Cf. A022352: Fibonacci(n+6) + Fibonacci(n-6). Cf. sequences with the formula Fibonacci(n+k)-Fibonacci(n-k): A000045 (k=1); A000032 (k=2); A022087 (k=3); A022379 (k=4, without initial 6); A022345 (k=5); this sequence (k=6); A022363 (k=7). Sequence in context: A083536 A305583 A316690 * A040243 A299584 A213558 Adjacent sequences:  A258157 A258158 A258159 * A258161 A258162 A258163 KEYWORD nonn,easy AUTHOR Bruno Berselli, May 22 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 11:29 EDT 2020. Contains 336438 sequences. (Running on oeis4.)