OFFSET
0,1
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..300
Tanya Khovanova, Recursive Sequences: a(n) = a(n-1)+a(n-2).
Index entries for linear recurrences with constant coefficients, signature (1,1).
FORMULA
G.f.: 8*(2 - x)/(1 - x - x^2).
a(n) = Fibonacci(n+6) - Fibonacci(n-6), where Fibonacci(-6..-1) = -8, 5, -3, 2, -1, 1 (see similar sequences listed in Crossrefs).
a(n) = Lucas(n+4) + Lucas(n) + Lucas(n-4), where Lucas(-4..-1) = 7, -4, 3, -1.
a(n) = a(n-1) + a(n-2) for n>1, a(0)=16, a(1)=8.
a(n) = 2*A156279(n).
a(n+1) = 4*A022112(n).
MATHEMATICA
Table[8 LucasL[n], {n, 0, 40}]
CoefficientList[Series[8*(2 - x)/(1 - x - x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 21 2017 *)
PROG
(Sage) [8*lucas_number2(n, 1, -1) for n in (0..40)]
(Magma) [8*Lucas(n): n in [0..40]];
(PARI) a(n)=([0, 1; 1, 1]^n*[16; 8])[1, 1] \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, May 22 2015
STATUS
approved