login
A258163
Decimal expansion of the log Gamma integral LG_4 = Integral_{0..1} log(Gamma(x))^4 dx.
2
2, 3, 3, 8, 9, 5, 1, 4, 4, 6, 5, 5, 1, 6, 8, 0, 1, 6, 1, 9, 6, 0, 0, 5, 5, 9, 1, 0, 5, 0, 5, 9, 1, 4, 0, 6, 5, 9, 0, 0, 7, 5, 2, 7, 6, 8, 3, 1, 9, 8, 4, 6, 4, 6, 6, 7, 7, 8, 5, 4, 5, 2, 0, 5, 4, 5, 6, 3, 6, 4, 7, 9, 5, 2, 5, 5, 8, 0, 1, 4, 8, 8, 8, 1, 0, 1, 7, 7, 7, 0, 4, 0, 3, 1, 5, 9, 8, 2, 6, 4, 8, 6, 5, 7, 9
OFFSET
2,1
LINKS
EXAMPLE
23.389514465516801619600559105059140659007527683198464667785452...
MAPLE
evalf(Int(log(GAMMA(x))^4, x=0..1), 120); # Vaclav Kotesovec, May 22 2015
MATHEMATICA
LG4 = NIntegrate[LogGamma[x]^4, {x, 0, 1}, WorkingPrecision -> 105];
RealDigits[LG4] // First
CROSSREFS
Cf. A075700 (LG_1), A102887 (LG_2), A258162 (LG_3), A258164 (LG_5).
Sequence in context: A326688 A011155 A161136 * A108381 A238761 A261469
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved