The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102887 Decimal expansion of Integral_{x=0..1} log(gamma(x))^2 dx. 5
 1, 8, 6, 6, 3, 1, 7, 0, 8, 3, 7, 9, 3, 5, 6, 2, 0, 8, 0, 9, 9, 2, 9, 6, 7, 9, 3, 7, 9, 7, 8, 2, 8, 9, 7, 3, 9, 8, 0, 0, 4, 0, 4, 1, 8, 6, 7, 9, 5, 3, 3, 8, 8, 0, 9, 4, 0, 5, 5, 1, 4, 4, 9, 5, 9, 3, 0, 4, 0, 9, 6, 5, 9, 8, 4, 9, 0, 5, 6, 3, 0, 3, 4, 7, 5, 5, 2, 3, 9, 8, 6, 0, 2, 9, 2, 5, 7, 2, 5, 0, 8, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also equals 1/6*log(2*Pi)^2 +2*log(A)*log(2*Pi) -1/6*gamma*log(2*Pi) +Pi^2/48 +2*gamma*log(A) +zeta''(2)/(2*Pi^2) (with A the Glaisher-Kinkelin constant). - Jean-François Alcover, Apr 29 2013 REFERENCES George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 236. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 M. L. Glasser, A note on Beukers's and related integrals, Amer. Math. Monthly 126(4) (2019), 361-363. FORMULA Equals gamma^2/12 + Pi^2/48 + (gamma*log(2*Pi))/6 + log(2*Pi)^2/3 - ((gamma + log(2*Pi))*zeta'(2))/Pi^2 + zeta''(2)/(2*Pi^2). Equals -Integral_{x=0..1, y=0..1} log(gamma(x*y))^2/log(x*y) dx dy. (Apply Theorem 1 or Theorem 2 in Glasser (2019).) - Petros Hadjicostas, Jun 30 2020 EXAMPLE 1.8663170837935620809929679379782897398... MATHEMATICA EulerGamma^2/12 + Pi^2/48 + (EulerGamma*Log[2*Pi])/6 + Log[2*Pi]^2/3 - ((EulerGamma + Log[2*Pi])*Zeta'[2])/Pi^2 + Zeta''[2]/(2*Pi^2) PROG (PARI) intnum(x=0, 1, log(gamma(x))^2) \\ Michel Marcus, Aug 27 2015 CROSSREFS Cf. A001620, A074962, A075700, A201994. Sequence in context: A270137 A269846 A316136 * A067970 A003675 A254290 Adjacent sequences:  A102884 A102885 A102886 * A102888 A102889 A102890 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Jan 15 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 10:26 EDT 2022. Contains 356009 sequences. (Running on oeis4.)