login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213555 Rectangular array:  (row n) = b**c, where b(h) = h^3, c(h) = n-1+h, n>=1, h>=1, and ** = convolution. 4
1, 10, 2, 46, 19, 3, 146, 82, 28, 4, 371, 246, 118, 37, 5, 812, 596, 346, 154, 46, 6, 1596, 1253, 821, 446, 190, 55, 7, 2892, 2380, 1694, 1046, 546, 226, 64, 8, 4917, 4188, 3164, 2135, 1271, 646, 262, 73, 9, 7942, 6942, 5484, 3948, 2576, 1496, 746 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Principal diagonal: A213556.

Antidiagonal sums: A213547.

Row 1,  (1,8,27,...)**(1,2,3,...):  A024166.

Row 2,  (1,8,27,...)**(2,3,4,...): (3*k^5 + 30*k^4 + 55*k^3 + 30*k^2 + 2*k)/60.

Row 3,  (1,8,27,...)**(3,4,5,...): (3*k^5 + 45*k^4 + 85*k^3 + 45*k^2 + 2*k)/60.

For a guide to related arrays, see A213500.

LINKS

Clark Kimberling, Antidiagonals n = 1..60, flattened

FORMULA

T(n,k) = 6*T(n,k-1) - 15*T(n,k-2) + 20*T(n,k-3) - 15*T(n,k-4) + 6*T(n,k-5) -T(n,k-6).

G.f. for row n:  f(x)/g(x), where f(x) = n + (3*n + 1)*x - (3*n - 4)*x^2 - (n - 1)*x^3 and g(x) = (1 - x)^6.

EXAMPLE

Northwest corner (the array is read by falling antidiagonals):

1...10...46....146...371....812

2...19...82....246...596....1253

3...28...118...346...821....1694

4...37...154...446...1046...2135

5...46...190...546...1271...2576

6...55...226...646...1496...3017

MATHEMATICA

b[n_] := n^3; c[n_] := n

t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]

TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]

Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]

r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213555 *)

d = Table[t[n, n], {n, 1, 40}] (* A213556 *)

s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]

s1 = Table[s[n], {n, 1, 50}] (* A213547 *)

CROSSREFS

Cf. A213500, A213553.

Sequence in context: A030595 A232590 A094715 * A305995 A096043 A001202

Adjacent sequences:  A213552 A213553 A213554 * A213556 A213557 A213558

KEYWORD

nonn,tabl,easy

AUTHOR

Clark Kimberling, Jun 17 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 19:08 EDT 2021. Contains 343829 sequences. (Running on oeis4.)