OFFSET
1,1
COMMENTS
All prime numbers of the form 16*(10^k - 1)/3 + 1 are terms of A002476.
For any k = a(n), the m-index of 16*(10^k - 1)/3 + 1 in sequence 6m+1 contains exactly a(n) digits, and each digit is 8. E.g., while k = a(1) = 6, 16*(10^6 - 1)/3 + 1 = 6*888888 + 1 = 5333329.
In any number of form 16*(10^k - 1)/3 + 1, its first digit is 5, its two last digits are 29, and each other digit that is between (5...29) is 3.
For k=1, k=2, k=3, the numbers of form 16*(10^k - 1)/3 + 1 are squares of the primes 7, 23, and 73, respectively (see A001248).
Equivalently defined as primes of the form (16*10^k-13)/3. - Tyler Busby, Apr 16 2024
LINKS
Makoto Kamada, Search for 53w29.
EXAMPLE
For k = a(1) = 6, 16*(10^6 - 1)/3 + 1 = 5333329 and 16*(10^6 - 1)/3 + 1 is prime.
MATHEMATICA
Select[Range@ 3000, PrimeQ[16 (10^# - 1)/3 + 1] &] (* Michael De Vlieger, Jan 23 2017 *)
PROG
(Python)
from sympy import isprime
def afind(limit, startk=1):
pow10 = 10**startk
for k in range(startk, limit+1):
if isprime(16*(pow10 - 1)//3 + 1): print(k, end=", ")
pow10 *= 10
afind(600) # Michael S. Branicky, Aug 17 2021
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Sergey Pavlov, Jan 21 2017
EXTENSIONS
a(12) from Michael S. Branicky, Aug 17 2021
a(13)-a(14) from Michael S. Branicky, Apr 06 2023
a(15) from Kamada data by Tyler Busby, Apr 16 2024
STATUS
approved