login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A281422
Expansion of 1/(1 - Sum_{k>=1} x^prime(prime(k))).
1
1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 4, 1, 3, 6, 2, 8, 9, 5, 16, 13, 14, 30, 20, 33, 51, 37, 72, 84, 76, 142, 141, 164, 264, 247, 344, 473, 462, 694, 836, 903, 1344, 1494, 1799, 2520, 2734, 3566, 4638, 5145, 6951, 8489, 9875, 13295, 15632, 19110, 25037, 29130, 36919, 46732, 54969, 70798, 87026, 104653, 134585, 162550
OFFSET
0,9
COMMENTS
Number of compositions (ordered partitions) of n into primes with prime subscripts (A006450).
FORMULA
G.f.: 1/(1 - Sum_{k>=1} x^prime(prime(k))).
EXAMPLE
a(11) = 4 because we have [11], [5, 3, 3], [3, 5, 3] and [3, 3, 5], where 3 = prime(2) = prime(prime(1)), 5 = prime(3) = prime(prime(2)) and 11 = prime(5) = prime(prime(3)).
MATHEMATICA
nmax = 64; CoefficientList[Series[1/(1 - Sum[x^Prime[Prime[k]], {k, 1, nmax}]), {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 21 2017
STATUS
approved