login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271368
Number of ways to write n as the sum of distinct super-primes (A006450).
1
0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 1, 0, 2, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 0, 1, 3, 0, 1, 2, 0, 3, 1, 1, 3, 1, 2, 2, 1, 1, 2, 0, 3, 2, 0, 3, 2, 2, 2, 2, 2, 3, 1, 2, 3, 0, 2, 3, 1, 4
OFFSET
1,31
COMMENTS
a(n) > 0 for n > 96 (cf. Dressler, Parker, 1975).
LINKS
R. E. Dressler and S. T. Parker, Primes with a Prime Subscript, Journal of the ACM, Vol. 22, No. 3 (1975), 380-381.
Wikipedia, Super-prime
FORMULA
G.f.: prod(k>=1, 1 + x^A006450(k) ). [Joerg Arndt, Apr 06 2016]
EXAMPLE
There are two ways to write 31 as the sum of distinct super-primes: 31 (a single summand, as 31 is itself a super-prime) and 17 + 11 + 3 (three summands), so a(31) = 2.
PROG
(PARI) isokp(pt) = {for (k=1, #pt, if (! isprime(pt[k]) || !isprime(primepi(pt[k])), return (0)); ); #pt == #Set(pt); }
a(n) = {if (n < 3, return (0)); nb = 0; forpart(pt = n, if (isokp(pt), nb++), [3, n]); nb; } \\ Michel Marcus, Apr 06 2016
CROSSREFS
Sequence in context: A216266 A177416 A087606 * A116799 A057556 A112761
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Apr 05 2016
EXTENSIONS
More terms from Michel Marcus, Apr 06 2016
STATUS
approved