login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271371
Total number of inversions in all partitions of n into distinct parts.
3
0, 0, 0, 1, 1, 2, 5, 6, 9, 13, 22, 26, 38, 48, 66, 89, 113, 142, 185, 230, 289, 368, 449, 554, 679, 831, 1003, 1224, 1474, 1767, 2117, 2528, 2996, 3568, 4206, 4967, 5855, 6862, 8027, 9391, 10943, 12724, 14785, 17124, 19807, 22898, 26376, 30345, 34893, 40013
OFFSET
0,6
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..8950 (terms 0..5000 from Alois P. Heinz)
FORMULA
a(n) = Sum_{k>=1} A161680(k) * A008289(n,k).
EXAMPLE
a(3) = 1: 21.
a(4) = 1: 31.
a(5) = 2: 32, 41.
a(6) = 5: 42, 51, 321 (three inversions).
MAPLE
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, [1, 0], b(n, i-1, t)+`if`(i>n, 0,
(p-> p+[0, p[1]*t])(b(n-i, i-1, t+1)))))
end:
a:= n-> b(n$2, 0)[2]:
seq(a(n), n=0..60);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n > i*(i+1)/2, 0, If[n == 0, {1, 0}, b[n, i-1, t] + If[i>n, 0, Function[p, p+{0, p[[1]]*t}][b[n-i, i-1, t+1]]]]]; a[n_] := b[n, n, 0][[2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 05 2016
STATUS
approved