login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271372
Total number of inversions in all compositions of n into distinct parts.
3
0, 0, 0, 1, 1, 2, 11, 12, 21, 31, 112, 122, 212, 294, 456, 1147, 1381, 2144, 3059, 4494, 6081, 13597, 15928, 24716, 33728, 49260, 65016, 93229, 169249, 210206, 304979, 417600, 584037, 779731, 1076824, 1409102, 2418068, 2950722, 4213584, 5581351, 7779829
OFFSET
0,6
FORMULA
a(n) = Sum_{k>=1} A001809(k) * A008289(n,k).
EXAMPLE
a(3) = 1: 21.
a(4) = 1: 31.
a(5) = 2: 41, 32.
a(6) = 11: one inversion in each of 51, 132, 42, 213, two inversions in each of 231, 312, three inversions in 321.
MAPLE
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, t!*t*(t-1)/4, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i-1, t+1))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 1)/2, 0, If[n == 0, t!*t*(t - 1)/4, b[n, i - 1, t] + If[i > n, 0, b[n - i, i - 1, t + 1]]]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 29 2018, from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 05 2016
STATUS
approved