login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063112
a(1) = 1; a(n+1) = a(n) + product of nonzero digits of a(n) when written in base 3. Display sequence in base 3.
4
1, 2, 11, 12, 21, 100, 101, 102, 111, 112, 121, 200, 202, 220, 1001, 1002, 1011, 1012, 1021, 1100, 1101, 1102, 1111, 1112, 1121, 1200, 1202, 1220, 2001, 2010, 2012, 2100, 2102, 2120, 2201, 2212, 10011, 10012, 10021, 10100, 10101, 10102, 10111, 10112
OFFSET
1,2
LINKS
P. A. Loomis, An Introduction to Digit Product Sequences, J. Rec. Math., 32 (2003-2004), 147-151.
P. A. Loomis, An Introduction to Digit Product Sequences, J. Rec. Math., 32 (2003-2004), 147-151. [Annotated archived copy]
PROG
(PARI) baseE(x, b)= { local(d, e, f); e=0; f=1; while (x>0, d=x-b*(x\b); x\=b; e+=d*f; f*=10); return(e) }
ProdNzD(x)= { local(d, p); p=1; while (x>9, d=x-10*(x\10); if (d, p*=d); x\=10); return(p*x) }
{ for (n=1, 1000, if (n>1, a=baseE(b+= ProdNzD(a), 3), a=1; b=1); write("b063112.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 19 2009
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Aug 08 2001
EXTENSIONS
More terms from Vladeta Jovovic, Aug 10 2001
STATUS
approved