login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063110
Dimension of the space of weight 2n cusp forms for Gamma_0(42).
0
5, 20, 36, 52, 68, 84, 100, 116, 132, 148, 164, 180, 196, 212, 228, 244, 260, 276, 292, 308, 324, 340, 356, 372, 388, 404, 420, 436, 452, 468, 484, 500, 516, 532, 548, 564, 580, 596, 612, 628, 644, 660, 676, 692, 708, 724, 740, 756, 772, 788
OFFSET
1,1
COMMENTS
Except for initial term is same as n such Mod(2*fibonacci(n)+1,7)=0 - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 29 2004
From Michael Somos, May 29 2013: (Start)
Dimension of the space of weight n+1 cusp forms for Gamma_1(24).
Dimension of the space of weight 2n+1 cusp forms for Gamma_0(42) is 0. (End)
FORMULA
Conjecture: a(n) = 16*n-12 for n>1. a(n) = 2*a(n-1)-a(n-2) for n>3. G.f.: x*(5+10*x+x^2)/(1-x)^2. - Colin Barker, Sep 23 2012
PROG
(PARI) {a(n) = if( n<2, 5*(n==1), 16*n - 12)}; /* Michael Somos, May 29 2013 */
(Sage) def a(n) : return( len( CuspForms( Gamma1( 24), n+1, prec = 1). basis())); # Michael Somos, May 29 2013
CROSSREFS
Sequence in context: A047716 A344190 A326005 * A044066 A013337 A031082
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 08 2001
STATUS
approved