login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dimension of the space of weight 2n cusp forms for Gamma_0(42).
0

%I #19 Aug 22 2019 12:18:12

%S 5,20,36,52,68,84,100,116,132,148,164,180,196,212,228,244,260,276,292,

%T 308,324,340,356,372,388,404,420,436,452,468,484,500,516,532,548,564,

%U 580,596,612,628,644,660,676,692,708,724,740,756,772,788

%N Dimension of the space of weight 2n cusp forms for Gamma_0(42).

%C Except for initial term is same as n such Mod(2*fibonacci(n)+1,7)=0 - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 29 2004

%C From _Michael Somos_, May 29 2013: (Start)

%C Dimension of the space of weight n+1 cusp forms for Gamma_1(24).

%C Dimension of the space of weight 2n+1 cusp forms for Gamma_0(42) is 0. (End)

%H William A. Stein, <a href="http://wstein.org/Tables/dimskg0n.gp">Dimensions of the spaces S_k(Gamma_0(N))</a>.

%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>

%F Conjecture: a(n) = 16*n-12 for n>1. a(n) = 2*a(n-1)-a(n-2) for n>3. G.f.: x*(5+10*x+x^2)/(1-x)^2. - _Colin Barker_, Sep 23 2012

%o (PARI) {a(n) = if( n<2, 5*(n==1), 16*n - 12)}; /* _Michael Somos_, May 29 2013 */

%o (Sage) def a(n) : return( len( CuspForms( Gamma1( 24), n+1, prec = 1). basis())); # _Michael Somos_, May 29 2013

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Jul 08 2001