login
A063115
Smallest k such that 2^k has exactly n 1's in its decimal representation.
9
1, 4, 17, 34, 57, 77, 70, 114, 127, 122, 207, 195, 202, 168, 319, 345, 329, 283, 410, 431, 463, 313, 467, 541, 485, 507, 610, 634, 563, 669, 576, 826, 655, 720, 784, 907, 894, 887, 766, 927, 945, 1029, 933, 994, 1134, 1102, 1171, 1205, 1351, 1309, 1128
OFFSET
0,2
LINKS
MATHEMATICA
a = {}; Do[k = 1; While[ Count[ IntegerDigits[2^k], 1] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
Join[{1}, With[{p2=Table[DigitCount[2^n, 10, 1], {n, 2000}]}, Table[ Position[ p2, m, 1, 1], {m, 50}]]//Flatten] (* Harvey P. Dale, Jun 10 2018 *)
PROG
(PARI) a(n)={my(k=1); while(n<>#select(d->d==1, digits(2^k)), k++); k} \\ Harry J. Smith, Aug 19 2009, Andrew Howroyd, Jun 26 2018
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Aug 10 2001
EXTENSIONS
Name corrected by Jon E. Schoenfield, Jun 25 2018
STATUS
approved