login
A063429
Smallest k such that 2^k has exactly n 3's in its decimal representation.
9
1, 5, 49, 25, 35, 109, 96, 128, 135, 169, 182, 156, 208, 302, 310, 277, 221, 300, 346, 498, 387, 502, 563, 507, 503, 611, 550, 585, 615, 681, 731, 817, 819, 835, 779, 860, 849, 840, 879, 997, 1016, 925, 1066, 1161, 1117, 1186, 1282, 1090, 1293, 1251, 1444
OFFSET
0,2
LINKS
MATHEMATICA
a = {}; Do[k = 1; While[ Count[ IntegerDigits[2^k], 3] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
With[{dr=Table[{k, DigitCount[2^k, 10, 3]}, {k, 1500}]}, Table[SelectFirst[dr, #[[2]]==n&], {n, 0, 50}]][[;; , 1]] (* Harvey P. Dale, Jul 30 2023 *)
PROG
(PARI) a(n)={my(k=1); while(n<>#select(d->d==3, digits(2^k)), k++); k} \\ Harry J. Smith, Aug 20 2009, Andrew Howroyd, Jun 26 2018
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Aug 10 2001
EXTENSIONS
Name corrected by Jon E. Schoenfield, Jun 25 2018
STATUS
approved