login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A063427
a(n) is the smallest positive integer k such that n*k/(n+k) is an integer.
14
2, 6, 4, 20, 3, 42, 8, 18, 10, 110, 4, 156, 14, 10, 16, 272, 9, 342, 5, 28, 22, 506, 8, 100, 26, 54, 21, 812, 6, 930, 32, 66, 34, 14, 12, 1332, 38, 78, 10, 1640, 7, 1806, 44, 30, 46, 2162, 16, 294, 50, 102, 52, 2756, 27, 66, 8, 114, 58, 3422, 12, 3660, 62, 18, 64, 104
OFFSET
2,1
COMMENTS
This produces the smallest positive integer value for n*k/(n+k).
Equivalently, smallest c such that 1/n + 1/c = 1/b has integer solutions.
Largest c is 1/(n(n-1)) since 1/n + 1/(n(n-1)) = 1/(n-1).
Let L(x,y)=x+y be the "basic" linear form. Let Q(x,y) = x^2 + x*y + y^2 be the "basic" quadratic form. Let C(x,y) = x^3 + y^3 + x^2*y + x*y^2 + x*y + x^2 + y^2 + x + y be the "basic" cubic form. Then a(n) = min(x/Q(x,n)=0 mod L(x,n)) = min(x/C(x,n) = 0 mod L(x,n)). - Benoit Cloitre, Jan 02 2002
For p=prime, a(p^k) = p^k*(p-1). - Leroy Quet, Jan 25 2007
a(n) = n*(d(i)-d(i-1))/d(i-1), where d(i) is the i-th divisor of n that minimizes (d(i)-d(i-1))/d(i-1) with i>=2. In general, let f(n) be an integer function, then n*f(n)/(n+f(n))=c, c positive integer, has a solution only if f(n) >= n*(d(i)-d(i-1))/d(i-1). - Ctibor O. Zizka, Sep 17 2015
LINKS
FORMULA
a(n) = n*A063428(n)/(n-A063428(n)).
EXAMPLE
a(6) = 3 because 6*3/(6+3)=2 is the smallest integer of the form 6*k/(6+k).
a(10) = 10 since 1/10 + 1/10 = 1/5, 1/10 + 1/15 = 1/6, 1/10 + 1/40 = 1/8, 1/10 + 1/90 = 1/9 and so the first sum provides the value.
MATHEMATICA
Table[k=1; While[!IntegerQ[(k n)/(k+n)], k++]; k, {n, 2, 70}] (* Harvey P. Dale, Jun 24 2011 *)
PROG
(PARI) a(n) = { my(k=1); while (n*k%(n + k), k++); k } \\ Harry J. Smith, Aug 20 2009
CROSSREFS
Sequence in context: A133936 A065350 A333923 * A066092 A100695 A275121
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jul 19 2001
EXTENSIONS
New description from Benoit Cloitre, Dec 30 2001
Entry revised by N. J. A. Sloane, Feb 13 2007
Definition revised by Franklin T. Adams-Watters, Aug 07 2009
STATUS
approved