OFFSET
2,1
COMMENTS
This produces the smallest positive integer value for n*k/(n+k).
Equivalently, smallest c such that 1/n + 1/c = 1/b has integer solutions.
Largest c is 1/(n(n-1)) since 1/n + 1/(n(n-1)) = 1/(n-1).
Let L(x,y)=x+y be the "basic" linear form. Let Q(x,y) = x^2 + x*y + y^2 be the "basic" quadratic form. Let C(x,y) = x^3 + y^3 + x^2*y + x*y^2 + x*y + x^2 + y^2 + x + y be the "basic" cubic form. Then a(n) = min(x/Q(x,n)=0 mod L(x,n)) = min(x/C(x,n) = 0 mod L(x,n)). - Benoit Cloitre, Jan 02 2002
For p=prime, a(p^k) = p^k*(p-1). - Leroy Quet, Jan 25 2007
a(n) = n*(d(i)-d(i-1))/d(i-1), where d(i) is the i-th divisor of n that minimizes (d(i)-d(i-1))/d(i-1) with i>=2. In general, let f(n) be an integer function, then n*f(n)/(n+f(n))=c, c positive integer, has a solution only if f(n) >= n*(d(i)-d(i-1))/d(i-1). - Ctibor O. Zizka, Sep 17 2015
LINKS
Harry J. Smith, Table of n, a(n) for n = 2..1000
EXAMPLE
a(6) = 3 because 6*3/(6+3)=2 is the smallest integer of the form 6*k/(6+k).
a(10) = 10 since 1/10 + 1/10 = 1/5, 1/10 + 1/15 = 1/6, 1/10 + 1/40 = 1/8, 1/10 + 1/90 = 1/9 and so the first sum provides the value.
MATHEMATICA
Table[k=1; While[!IntegerQ[(k n)/(k+n)], k++]; k, {n, 2, 70}] (* Harvey P. Dale, Jun 24 2011 *)
PROG
(PARI) a(n) = { my(k=1); while (n*k%(n + k), k++); k } \\ Harry J. Smith, Aug 20 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jul 19 2001
EXTENSIONS
New description from Benoit Cloitre, Dec 30 2001
Entry revised by N. J. A. Sloane, Feb 13 2007
Definition revised by Franklin T. Adams-Watters, Aug 07 2009
STATUS
approved