login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A333982 a(0) = 0; a(n) = 3^(n-1) + (1/n) * Sum_{k=1..n-1} binomial(n,k)^2 * 3^(k-1) * (n-k) * a(n-k). 4
0, 1, 5, 48, 909, 28836, 1371384, 91308708, 8106024861, 925225277004, 132007041682380, 23019553116101268, 4817014157800460664, 1191268407723761654964, 343706793228408937835772, 114423311913128119741898268, 43534429651349601213257298621, 18771927426013054800534345817884, 9106204442628918977341144456510260 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..18.

FORMULA

Sum_{n>=0} a(n) * x^n / (n!)^2 = -log((4 - BesselI(0,2*sqrt(3*x))) / 3).

MATHEMATICA

a[0] = 0; a[n_] := a[n] = 3^(n - 1) + (1/n) Sum[Binomial[n, k]^2 3^(k - 1) (n - k) a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 0, 18}]

nmax = 18; CoefficientList[Series[-Log[(4 - BesselI[0, 2 Sqrt[3 x]])/3], {x, 0, nmax}], x] Range[0, nmax]!^2

CROSSREFS

Cf. A102223, A201355, A333981, A333983, A333984, A333985, A337593.

Sequence in context: A127091 A346183 A224510 * A063429 A297856 A298091

Adjacent sequences:  A333979 A333980 A333981 * A333983 A333984 A333985

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Sep 04 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 19:45 EST 2022. Contains 350504 sequences. (Running on oeis4.)