|
|
A333983
|
|
a(0) = 0; a(n) = 4^(n-1) + (1/n) * Sum_{k=1..n-1} binomial(n,k)^2 * 4^(k-1) * (n-k) * a(n-k).
|
|
4
|
|
|
0, 1, 6, 64, 1328, 46336, 2423040, 177379840, 17314109440, 2172895068160, 340868882825216, 65356107645583360, 15037174515952517120, 4088810357694136320000, 1297103066111891262668800, 474788193071044243776077824, 198617395218460028950533898240, 94165608216423156721014443868160
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..17.
|
|
FORMULA
|
Sum_{n>=0} a(n) * x^n / (n!)^2 = -log((5 - BesselI(0,4*sqrt(x))) / 4).
|
|
MATHEMATICA
|
a[0] = 0; a[n_] := a[n] = 4^(n - 1) + (1/n) Sum[Binomial[n, k]^2 4^(k - 1) (n - k) a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 0, 17}]
nmax = 17; CoefficientList[Series[-Log[(5 - BesselI[0, 4 Sqrt[x]])/4], {x, 0, nmax}], x] Range[0, nmax]!^2
|
|
CROSSREFS
|
Cf. A102223, A201368, A333981, A333982, A333984, A333985, A337594.
Sequence in context: A336114 A258425 A249592 * A087488 A249896 A249828
Adjacent sequences: A333980 A333981 A333982 * A333984 A333985 A333986
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Ilya Gutkovskiy, Sep 04 2020
|
|
STATUS
|
approved
|
|
|
|