login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A333983 a(0) = 0; a(n) = 4^(n-1) + (1/n) * Sum_{k=1..n-1} binomial(n,k)^2 * 4^(k-1) * (n-k) * a(n-k). 4
0, 1, 6, 64, 1328, 46336, 2423040, 177379840, 17314109440, 2172895068160, 340868882825216, 65356107645583360, 15037174515952517120, 4088810357694136320000, 1297103066111891262668800, 474788193071044243776077824, 198617395218460028950533898240, 94165608216423156721014443868160 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..17.

FORMULA

Sum_{n>=0} a(n) * x^n / (n!)^2 = -log((5 - BesselI(0,4*sqrt(x))) / 4).

MATHEMATICA

a[0] = 0; a[n_] := a[n] = 4^(n - 1) + (1/n) Sum[Binomial[n, k]^2 4^(k - 1) (n - k) a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 0, 17}]

nmax = 17; CoefficientList[Series[-Log[(5 - BesselI[0, 4 Sqrt[x]])/4], {x, 0, nmax}], x] Range[0, nmax]!^2

CROSSREFS

Cf. A102223, A201368, A333981, A333982, A333984, A333985, A337594.

Sequence in context: A336114 A258425 A249592 * A087488 A249896 A249828

Adjacent sequences:  A333980 A333981 A333982 * A333984 A333985 A333986

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Sep 04 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 16:37 EDT 2022. Contains 354119 sequences. (Running on oeis4.)