The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102223 Column 0 of triangular matrix A102222, which equals -log[2*I - A008459]. 8
 0, 1, 3, 22, 323, 7906, 290262, 14919430, 1022475715, 90094491994, 9923239949978, 1335853771297750, 215797095378591542, 41198645313603207990, 9176288655853717238830, 2358300288047799986966722 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Triangle A008459 consists of squared binomial coefficients. LINKS FORMULA a(n) = 1 + (1/n)*Sum_{k=0..n-1} C(n, k)^2*k*a(k) for n>0, with a(0)=0. Sum_{n>=0} a(n)*x^n/n!^2 = -log(2-BesselI(0,2*sqrt(x))). - Vladeta Jovovic, Jul 16 2006 EXAMPLE a(2) = 3 = 1 + (1*0*0 + 4*1*1)/2, a(3) = 22 = 1 + (1*0*0 + 9*1*1 + 9*2*3)/3, a(4) = 323 = 1 + (1*0*0 + 16*1*1 + 36*2*3 + 16*3*22)/4, a(5) = 7906 = 1 + (1*0*0 + 25*1*1 + 100*2*3 + 100*3*22 + 25*4*323)/5. PROG (PARI) a(n)=if(n<1, 0, 1+sum(k=0, n-1, binomial(n, k)^2*k*a(k))/n) CROSSREFS Cf. A008459, A102220, A102222. Sequence in context: A161967 A192036 A229770 * A189897 A306578 A046947 Adjacent sequences:  A102220 A102221 A102222 * A102224 A102225 A102226 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 31 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 21:32 EST 2021. Contains 349416 sequences. (Running on oeis4.)