login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102222 Logarithm of triangular matrix A102220, which equals [2*I - A008459]^(-1). 4
0, 1, 0, 3, 4, 0, 22, 27, 9, 0, 323, 352, 108, 16, 0, 7906, 8075, 2200, 300, 25, 0, 290262, 284616, 72675, 8800, 675, 36, 0, 14919430, 14222838, 3486546, 395675, 26950, 1323, 49, 0, 1022475715, 954843520, 227565408, 24793216, 1582700, 68992, 2352, 64, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Column 0 forms A102223.

LINKS

Table of n, a(n) for n=0..44.

FORMULA

T(n, k) = C(n, k)^2*A102223(n-k). T(n, 0) = A102223(n). T(n, n) = 0 for n>=0. [A102222] = Sum_{m=1..inf} [A008459 - I]^m/m.

EXAMPLE

Rows begin:

[0],

[1,0],

[3,4,0],

[22,27,9,0],

[323,352,108,16,0],

[7906,8075,2200,300,25,0],

[290262,284616,72675,8800,675,36,0],...

which equals the term-by-term product of column 0

with the squared binomial coefficients (A008459):

[(0)1^2],

[(1)1^2,(0)1^2],

[(3)1^2,(1)2^2,(0)1^2],

[(22)1^2,(3)3^2,(1)3^2,(0)1^2],

[(323)1^2,(22)4^2,(3)6^2,(1)4^2,(0)1^2],...

PROG

(PARI) {T(n, k)=if(n<k|k<0, 0, sum(m=1, n, (matrix(n+1, n+1, i, j, binomial(i-1, j-1)^2-if(i==j, 1, 0))^m/m)[n+1, k+1]))}

CROSSREFS

Cf. A008459, A102220, A102223.

Sequence in context: A192442 A009126 A322278 * A171657 A287696 A084301

Adjacent sequences:  A102219 A102220 A102221 * A102223 A102224 A102225

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Dec 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 06:18 EST 2022. Contains 350464 sequences. (Running on oeis4.)