login
A287696
Triangle read by rows, T(n,k) = (n!)^3 * [x^k] [z^n] hypergeom([], [1, 1], z)^x for n>=0, 0<=k<=n.
2
1, 0, 1, 0, -3, 4, 0, 46, -81, 36, 0, -1899, 3916, -2592, 576, 0, 163476, -375375, 305500, -108000, 14400, 0, -25333590, 63002191, -58725000, 26370000, -5832000, 518400, 0, 6412369860, -16976577828, 17470973569, -9168390000, 2636298000, -400075200, 25401600
OFFSET
0,5
COMMENTS
The polynomials Sum_{k=0..n} T(n,k) x^k generate the columns of A287698.
FORMULA
Sum_{k=0..n} T(n,k) = A000012(n).
Sum_{k=0..n} abs(T(n,k)) = A212856(n) = A212855_row(3).
EXAMPLE
0: [1]
1: [0, 1]
2: [0, -3, 4]
3: [0, 46, -81, 36]
4: [0, -1899, 3916, -2592, 576]
5: [0, 163476, -375375, 305500, -108000, 14400]
6: [0, -25333590, 63002191, -58725000, 26370000, -5832000, 518400]
MAPLE
A287696_row := proc(n) local k; hypergeom([], [1, 1], z); series(%^x, z=0, n+1):
n!^3*coeff(%, z, n); seq(coeff(%, x, k), k=0..n) end:
for n from 0 to 8 do A287696_row(n) od;
A287696_poly := proc(n) local k, x; hypergeom([], [1, 1], z); series(%^x, z=0, n+1):
unapply(n!^3*coeff(%, z, n), x); end:
for n from 0 to 7 do A287696_poly(n) od;
MATHEMATICA
T[n_, k_] := (n!)^3 SeriesCoefficient[HypergeometricPFQ[{}, {1, 1}, z]^x, {x, 0, k}, {z, 0, n}];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 13 2017 *)
CROSSREFS
T(n,n) = A001044(n).
Sequence in context: A322278 A102222 A171657 * A375941 A366465 A084301
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, May 30 2017
STATUS
approved