login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287699
a(n) = (n!)^3 * [x^n] hypergeom([], [1, 1], x)^4.
2
1, 4, 52, 1192, 36628, 1297504, 50419096, 2099649808, 92239977748, 4225417349872, 200149545055552, 9743739840316288, 485293084757188504, 24641572224240907264, 1272101807179840322416, 66620238759427147324192, 3532989709864148362611988, 189447449844340069835395984
OFFSET
0,2
FORMULA
Recurrence: (n-1)^2*n^6*(4179357*n^8 - 78014664*n^7 + 632906379*n^6 - 2915042445*n^5 + 8338804227*n^4 - 15175362645*n^3 + 17163198021*n^2 - 11033807142*n + 3088189672)*a(n) = (n-1)^2*(321810489*n^14 - 6972560595*n^13 + 68195663613*n^12 - 398723185476*n^11 + 1556210780586*n^10 - 4290176939202*n^9 + 8625424194708*n^8 - 12878626068195*n^7 + 14401770594884*n^6 - 12054703508348*n^5 + 7464118767536*n^4 - 3324818312080*n^3 + 1009161337280*n^2 - 187078472000*n + 15996099840)*a(n-1) - (4292199639*n^16 - 114458657040*n^15 + 1414085794758*n^14 - 10748138802219*n^13 + 56276210317086*n^12 - 215315257854096*n^11 + 622952233195566*n^10 - 1390775235633963*n^9 + 2422273491685843*n^8 - 3303218468438722*n^7 + 3516261474581476*n^6 - 2891864865024712*n^5 + 1801769964078784*n^4 - 822311126185120*n^3 + 259313519840640*n^2 - 50491775044480*n + 4574054714880)*a(n-2) + (n-2)^2*(41455042083*n^14 - 1064012746797*n^13 + 12496613326470*n^12 - 88977496857795*n^11 + 428877145565253*n^10 - 1479691251840690*n^9 + 3766745840954286*n^8 - 7184451834695931*n^7 + 10314626748833734*n^6 - 11091478948669399*n^5 + 8794647685753046*n^4 - 4988208446505900*n^3 + 1914324172568200*n^2 - 445291128023840*n + 47406419692800)*a(n-3) + 8*(n-3)^3*(n-2)^2*(87060185667*n^11 - 1712183651451*n^10 + 14956429421367*n^9 - 76542540324894*n^8 + 254862421705026*n^7 - 579589444734966*n^6 + 918686062982112*n^5 - 1015496680681101*n^4 + 767926983449420*n^3 - 378895216669900*n^2 + 109953142874960*n - 14239574392960)*a(n-4) - 175616*(n-4)^3*(n-3)^3*(n-2)^2*(4179357*n^8 - 44579808*n^7 + 203825727*n^6 - 521868123*n^5 + 819229437*n^4 - 808911855*n^3 + 491820735*n^2 - 168723870*n + 25050760)*a(n-5). - Vaclav Kotesovec, Jul 05 2018
a(n) ~ 2^(6*n + 5) / (3^(3/2) * Pi^3 * n^3). - Vaclav Kotesovec, Jul 05 2018
MAPLE
A287699_list := proc(len) series(hypergeom([], [1, 1], x)^4, x, len);
seq((n!)^3*coeff(%, x, n), n=0..len-1) end: A287699_list(18);
MATHEMATICA
Table[SeriesCoefficient[HypergeometricPFQ[{}, {1, 1}, x]^4, {x, 0, n}] n!^3, {n, 0, 17}]
CROSSREFS
Row 4 of A287698.
Sequence in context: A354262 A377576 A144829 * A377630 A280571 A343429
KEYWORD
nonn
AUTHOR
Peter Luschny, May 31 2017
STATUS
approved