OFFSET
0,2
FORMULA
E.g.f.: Sum_{k>=0} binomial(2*k,k) * (-2 * log(1-x))^k.
a(n) = Sum_{k=0..n} 2^k * (2*k)! * |Stirling1(n,k)|/k!.
a(n) ~ n^n / (2 * (exp(1/8)-1)^(n + 1/2) * exp(7*n/8)). - Vaclav Kotesovec, Jun 04 2022
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/Sqrt[1+8*Log[1-x]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Dec 14 2024 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1+8*log(1-x))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*(-2*log(1-x))^k)))
(PARI) a(n) = sum(k=0, n, 2^k*(2*k)!*abs(stirling(n, k, 1))/k!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 21 2022
STATUS
approved