login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354262
Expansion of e.g.f. 1/sqrt(1 + 8 * log(1-x)).
2
1, 4, 52, 1112, 33192, 1272576, 59607552, 3298935552, 210638509824, 15241340093952, 1232504690492928, 110154484622208000, 10782300230031713280, 1147157496053856645120, 131810751499551281786880, 16266976762439018716323840, 2145960434809665656603320320
OFFSET
0,2
FORMULA
E.g.f.: Sum_{k>=0} binomial(2*k,k) * (-2 * log(1-x))^k.
a(n) = Sum_{k=0..n} 2^k * (2*k)! * |Stirling1(n,k)|/k!.
a(n) ~ n^n / (2 * (exp(1/8)-1)^(n + 1/2) * exp(7*n/8)). - Vaclav Kotesovec, Jun 04 2022
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/Sqrt[1+8*Log[1-x]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Dec 14 2024 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1+8*log(1-x))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*(-2*log(1-x))^k)))
(PARI) a(n) = sum(k=0, n, 2^k*(2*k)!*abs(stirling(n, k, 1))/k!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 21 2022
STATUS
approved