The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A354259 Expansion of e.g.f. 1/sqrt(1 - 6 * log(1+x)). 2
1, 3, 24, 330, 6354, 157482, 4772268, 170950392, 7066790676, 331108863372, 17340063707952, 1003726452207960, 63635982830437320, 4385439331442232840, 326404115258791793040, 26093904013675118381760, 2229931839713559043435920 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
E.g.f.: Sum_{k>=0} binomial(2*k,k) * (3 * log(1+x)/2)^k.
a(n) = Sum_{k=0..n} (3/2)^k * (2*k)! * Stirling1(n,k)/k!.
a(n) ~ n^n / (sqrt(3) * (exp(1/6)-1)^(n + 1/2) * exp(n - 1/12)). - Vaclav Kotesovec, Jun 04 2022
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/Sqrt[1-6Log[1+x]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Oct 06 2023 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1-6*log(1+x))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*(3*log(1+x)/2)^k)))
(PARI) a(n) = sum(k=0, n, (3/2)^k*(2*k)!*stirling(n, k, 1)/k!);
CROSSREFS
Sequence in context: A232693 A319939 A082166 * A370055 A371007 A144003
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 21 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 17:32 EDT 2024. Contains 373391 sequences. (Running on oeis4.)