The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319939 O.g.f. A(x) satisfies: [x^n] exp(-n^2*A(x)) / (1 - n*x)^n = 0, for n > 0. 7
 1, 1, 3, 24, 325, 6642, 176204, 5828160, 228372291, 10374419250, 534203188948, 30762752950224, 1956914341159778, 136286437739608492, 10310240639621093400, 841935232438747348480, 73807352585103519962815, 6913603998931859925828282, 689148541231545351838902508, 72838943589708142133363904400, 8137053663063956034586144506558, 958035702236154579666369909892724 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS It is remarkable that this sequence should consist entirely of integers. LINKS Paul D. Hanna, Table of n, a(n) for n = 1..200 FORMULA a(n) ~ c * d^n * n! / n^3, where d = 6.1103392... and c = 0.05165... - Vaclav Kotesovec, Oct 24 2020 EXAMPLE O.g.f.: A(x) = x + x^2 + 3*x^3 + 24*x^4 + 325*x^5 + 6642*x^6 + 176204*x^7 + 5828160*x^8 + 228372291*x^9 + 10374419250*x^10 + ... ILLUSTRATION OF DEFINITION. The table of coefficients of x^k/k! in exp(-n^2*A(x)) / (1 - n*x)^n begins: n=1: [1, 0, -1, -16, -567, -38816, -4771025, -886931424, ...]; n=2: [1, 0, 0, -40, -2112, -154464, -19097600, -3549131520, ...]; n=3: [1, 0, 9, 0, -3483, -333504, -43269795, -8050921776, ...]; n=4: [1, 0, 32, 224, 0, -454016, -75031040, -14515172352, ...]; n=5: [1, 0, 75, 800, 21225, 0, -92559125, -22271154000, ...]; n=6: [1, 0, 144, 1944, 88128, 2515104, 0, -25624491264, ...]; n=7: [1, 0, 245, 3920, 252693, 10516576, 505622425, 0, ...]; n=8: [1, 0, 384, 7040, 602112, 30829056, 2210682880, 134210187264, 0, ...]; in which the coefficient of x^n in row n forms a diagonal of zeros. RELATED SERIES. exp(A(x)) = 1 + x + 3*x^2 + 25*x^3/3! + 673*x^4/4! + 42501*x^5/5! + 5048251*x^6/6! + 924544573*x^7/7! + 242568147585*x^8/8! + ... PROG (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(-m^2*x*Ser(A))/(1-m*x +x^2*O(x^m))^m)[m+1]/m^2 ); A[n]} for(n=1, 30, print1(a(n), ", ")) CROSSREFS Cf. A319938, A319940, A320669. Sequence in context: A264561 A003236 A232693 * A082166 A354259 A370055 Adjacent sequences: A319936 A319937 A319938 * A319940 A319941 A319942 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 09 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 19:53 EDT 2024. Contains 372607 sequences. (Running on oeis4.)