login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319940
O.g.f. A(x) satisfies: [x^n] exp( -n*A(x) ) / (1 - n*x)^n = 0, for n > 0.
3
1, 3, 30, 586, 17430, 696744, 34892228, 2095250576, 146470011822, 11669877667640, 1043022527852272, 103294254944725680, 11223660850862809960, 1327297414140637610776, 169690627501555713200460, 23320015259500560303564736, 3428111061331035575475494598, 536769111685159965192282250632, 89187403511916331132476542213808
OFFSET
1,2
COMMENTS
It is remarkable that this sequence should consist entirely of integers.
a(n) is even for n > 2, with a(2^k + 1) = 2 (mod 4) for k >= 1 (conjecture).
LINKS
FORMULA
a(n) ~ c * d^n * n! / n^2, where d = 9.669628447... and c = 0.0559981... - Vaclav Kotesovec, Oct 24 2020
EXAMPLE
O.g.f.: A(x) = x + 3*x^2 + 30*x^3 + 586*x^4 + 17430*x^5 + 696744*x^6 + 34892228*x^7 + 2095250576*x^8 + 146470011822*x^9 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(-n*A(x))/(1 - n*x)^n begins:
n=1: [1, 0, -5, -178, -13983, -2082676, -500286245, ...];
n=2: [1, 2, 0, -344, -30592, -4460832, -1052294144, ...];
n=3: [1, 6, 45, 0, -46323, -7614918, -1758528063, ...];
n=4: [1, 12, 184, 2960, 0, -10429504, -2724259328, ...];
n=5: [1, 20, 495, 14050, 391505, 0, -3527335025, ...];
n=6: [1, 30, 1080, 44712, 2022912, 86720544, 0, ...];
n=7: [1, 42, 2065, 115556, 7166733, 472602158, 28883187781, 0, ...]; ...
in which the coefficient of x^n in row n forms a diagonal of zeros.
RELATED SERIES.
exp(A(x)) = 1 + x + 7*x^2/2! + 199*x^3/3! + 14929*x^4/4! + 2175121*x^5/5! + 516079351*x^6/6! + 179777047927*x^7/7! + ...
exp(-A(x)) = 1 - x - 5*x^2/2! - 163*x^3/3! - 13271*x^4/4! - 2012761*x^5/5! - 487790189*x^6/6! - 172048095115*x^7/7! + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(-m*x*Ser(A))/(1-m*x +x^2*O(x^m))^m)[m+1]/m ); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A300617 A365653 A301663 * A177449 A184900 A274797
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 11 2018
STATUS
approved