login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300617
O.g.f. A(x) satisfies: [x^n] exp( n * A(x) ) = n^2 * [x^(n-1)] exp( n * A(x) ) for n>=1.
6
1, 3, 30, 550, 15375, 601398, 31299268, 2093655600, 175312873125, 17987972309725, 2221603804365924, 325310016974127276, 55749742122979646105, 11056914755618659399500, 2513208049272148754203200, 649086459674801585681092992, 189044817293654530855544266209, 61671809408989968268084102641075, 22399957973327602630210233608217250, 9009223131975798265447660437783058050
OFFSET
1,2
COMMENTS
Compare to: [x^n] exp( n * x ) = [x^(n-1)] exp( n * x ) for n>=1.
It is conjectured that this sequence consists entirely of integers.
a(n) is divisible by n*(n+1)/2 (conjecture); A300589(n) = a(n) / (n*(n+1)/2).
LINKS
FORMULA
O.g.f. equals the logarithm of the e.g.f. of A300616.
O.g.f. A(x) satisfies: [x^n] exp(-n*A(x)) * (1 - n^2*x) = 0, for n > 0. - Paul D. Hanna, Oct 15 2018
a(n) ~ c * (n!)^2, where c = 1.685041722777551007711429045295022018562828... - Vaclav Kotesovec, Mar 10 2018
EXAMPLE
O.g.f.: A(x) = x + 3*x^2 + 30*x^3 + 550*x^4 + 15375*x^5 + 601398*x^6 + 31299268*x^7 + 2093655600*x^8 + 175312873125*x^9 + 17987972309725*x^10 + ...
where
exp(A(x)) = 1 + x + 7*x^2/2! + 199*x^3/3! + 14065*x^4/4! + 1924201*x^5/5! + 445859911*x^6/6! + 161145717727*x^7/7! + 85790577700129*x^8/8! + ... + A300616(n)*x^n/n! + ...
such that: [x^n] exp( n * A(x) ) = n^2 * [x^(n-1)] exp( n * A(x) ).
RELATED SEQUENCES.
The sequence A300589(n) = a(n) / (n*(n+1)/2) begins:
[1, 1, 5, 55, 1025, 28638, 1117831, 58157100, 3895841625, 327054041995, ...].
The table of coefficients in x^k/k! in exp(-n*A(x)) * (1 - n^2*x) begins:
n=1: [1, 0, 5, 178, 13269, 1853876, 434314705, 158024698350, ...];
n=2: [1, -2, 0, 248, 22976, 3416592, 822150016, 303575549440, ...];
n=3: [1, -6, -27, 0, 21861, 4129758, 1079984097, 415322613324, ...];
n=4: [1, -12, -88, -848, 0, 3286304, 1109402752, 469332346368, ...];
n=5: [1, -20, -195, -2650, -55675, 0, 794678425, 438768342850, ...];
n=6: [1, -30, -360, -5832, -161856, -6828624, 0, 293555007360, ...];
n=7: [1, -42, -595, -10892, -339339, -18549958, -1433676839, 0, ...]; ...
in which the coefficient of x^n in row n forms a diagonal of zeros.
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(#A-1)); A[#A] = ((#A-1)^2*V[#A-1] - V[#A])/(#A-1) ); polcoeff( log(Ser(A)), n)}
for(n=1, 20, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = -Vec( exp(m^1*x*Ser(A))*(1-m^2*x +x^2*O(x^m))^(1))[m+1]/m ); A[n]}
for(n=1, 20, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 10 2018
STATUS
approved