|
|
A287698
|
|
Square array A(n,k) = (n!)^3 [x^n] hypergeom([], [1, 1], z)^k read by antidiagonals.
|
|
7
|
|
|
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 10, 1, 0, 1, 4, 27, 56, 1, 0, 1, 5, 52, 381, 346, 1, 0, 1, 6, 85, 1192, 6219, 2252, 1, 0, 1, 7, 126, 2705, 36628, 111753, 15184, 1, 0, 1, 8, 175, 5136, 124405, 1297504, 2151549, 104960, 1, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
COMMENTS
|
Let A_m(n,k) = (n!)^m [x^n] hypergeom([], [1,…,1], z)^k where [1,…,1] lists (m-1) times 1. These arrays can be seen as generalizations of the power functions n^k. For m = 1 -> A003992, m = 2 -> A287316, m = 3 -> A287698.
A_m(n,n) is the sum of m-th powers of coefficients in the full expansion of (z_1+z_2+...+z_n)^n (compare A245397).
A287696 provide polynomials and A287697 rational functions generating the columns of the array.
|
|
LINKS
|
|
|
EXAMPLE
|
Array starts:
k\n| 0 1 2 3 4 5 6 7
---|-------------------------------------------------------------------
k=0| 1, 0, 0, 0, 0, 0, 0, 0, ... A000007
k=1| 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
k=2| 1, 2, 10, 56, 346, 2252, 15184, 104960, ... A000172
k=3| 1, 3, 27, 381, 6219, 111753, 2151549, 43497891, ... A141057
k=4| 1, 4, 52, 1192, 36628, 1297504, 50419096, 2099649808, ... A287699
k=5| 1, 5, 85, 2705, 124405, 7120505, 464011825, 33031599725, ...
k=6| 1, 6, 126, 5136, 316206, 25461756, 2443835736, 263581282656, ...
|
|
MAPLE
|
A287698_row := proc(k, len) hypergeom([], [1, 1], x):
series(%^k, x, len); seq((i!)^3*coeff(%, x, i), i=0..len-1) end:
for k from 0 to 6 do A287698_row(k, 9) od;
A287698_col := proc(n, len) local k, x; hypergeom([], [1, 1], z);
series(%^x, z=0, n+1): unapply(n!^3*coeff(%, z, n), x); seq(%(j), j=0..len) end:
for n from 0 to 7 do A287698_col(n, 9) od;
|
|
MATHEMATICA
|
Table[Table[SeriesCoefficient[HypergeometricPFQ[{}, {1, 1}, x]^k, {x, 0, n}] (n!)^3, {n, 0, 6}], {k, 0, 9}] (* as a table of rows *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|