login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055733
Sum of third powers of coefficients in full expansion of (z1+z2+...+zn)^n.
3
1, 1, 10, 381, 36628, 7120505, 2443835736, 1351396969615, 1127288317316008, 1349611750487720817, 2230372438317527996620, 4930842713588476723120511, 14211567663513739084746570600, 52259895270824126097423028107277, 240736564755509319272061470644316416
OFFSET
0,3
LINKS
FORMULA
a(n) is coefficient of x^n in expansion of n!^3*(1+x/1!^3+x^2/2!^3+x^3/3!^3+...+x^n/n!^3)^n.
a(n) ~ c * d^n * (n!)^3 / sqrt(n), where d = 1.74218173246413..., c = 0.5728782413434... . - Vaclav Kotesovec, Aug 20 2014
a(n) = (n!)^3 * [z^n] hypergeom([], [1, 1], z)^n. - Peter Luschny, May 31 2017
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-j, i-1)*binomial(n, j)^2/j!, j=0..n)))
end:
a:= n-> n!*b(n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 21 2014
A055733 := proc(n) series(hypergeom([], [1, 1], z)^n, z=0, n+1): n!^3*coeff(%, z, n) end: seq(A055733(n), n=0..14); # Peter Luschny, May 31 2017
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n-j, i-1]*Binomial[n, j]^2 / j!, {j, 0, n}]]]; a[n_] := n!*b[n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)
Table[SeriesCoefficient[HypergeometricPFQ[{}, {1, 1}, x]^n, {x, 0, n}] n!^3, {n, 0, 14}] (* Peter Luschny, May 31 2017 *)
CROSSREFS
Cf. A033935.
Column k=3 of A245397.
Sequence in context: A277663 A000591 A131312 * A349480 A203774 A024136
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jun 09 2000
EXTENSIONS
a(0)=1 inserted by Alois P. Heinz, Jul 21 2014
STATUS
approved