login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of third powers of coefficients in full expansion of (z1+z2+...+zn)^n.
3

%I #20 May 31 2017 16:29:17

%S 1,1,10,381,36628,7120505,2443835736,1351396969615,1127288317316008,

%T 1349611750487720817,2230372438317527996620,4930842713588476723120511,

%U 14211567663513739084746570600,52259895270824126097423028107277,240736564755509319272061470644316416

%N Sum of third powers of coefficients in full expansion of (z1+z2+...+zn)^n.

%H Alois P. Heinz, <a href="/A055733/b055733.txt">Table of n, a(n) for n = 0..100</a>

%F a(n) is coefficient of x^n in expansion of n!^3*(1+x/1!^3+x^2/2!^3+x^3/3!^3+...+x^n/n!^3)^n.

%F a(n) ~ c * d^n * (n!)^3 / sqrt(n), where d = 1.74218173246413..., c = 0.5728782413434... . - _Vaclav Kotesovec_, Aug 20 2014

%F a(n) = (n!)^3 * [z^n] hypergeom([], [1, 1], z)^n. - _Peter Luschny_, May 31 2017

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(b(n-j, i-1)*binomial(n, j)^2/j!, j=0..n)))

%p end:

%p a:= n-> n!*b(n$2):

%p seq(a(n), n=0..20); # _Alois P. Heinz_, Jul 21 2014

%p A055733 := proc(n) series(hypergeom([],[1,1],z)^n,z=0,n+1): n!^3*coeff(%,z,n) end: seq(A055733(n), n=0..14); # _Peter Luschny_, May 31 2017

%t b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n-j, i-1]*Binomial[n, j]^2 / j!, {j, 0, n}]]]; a[n_] := n!*b[n, n]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Feb 24 2015, after _Alois P. Heinz_ *)

%t Table[SeriesCoefficient[HypergeometricPFQ[{}, {1,1}, x]^n, {x,0,n}] n!^3, {n,0,14}] (* _Peter Luschny_, May 31 2017 *)

%Y Cf. A033935.

%Y Column k=3 of A245397.

%K nonn

%O 0,3

%A _Vladeta Jovovic_, Jun 09 2000

%E a(0)=1 inserted by _Alois P. Heinz_, Jul 21 2014