login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349480
a(n) = Sum_{j=0..n} (-1)^(n-j) * Product_{k=(j-1)*n+1..j*n} k.
2
1, 1, 10, 390, 33456, 4845360, 1059099840, 325460948400, 133697543616000, 70733019878196480, 46831083260349024000, 37927830201482962540800, 36883442511877368877747200, 42409212946187708288828160000
OFFSET
0,3
LINKS
FORMULA
a(n) = n! * A349470(n) = n! * Sum_{k=0..n} (-1)^(n-k) * binomial(k*n,n).
EXAMPLE
a(2) = -1*2 + 3*4 = 10.
a(3) = 1*2*3 - 4*5*6 + 7*8*9 = 390.
a(4) = -1*2*3*4 + 5*6*7*8 - 9*10*11*12 + 13*14*15*16 = 33456.
MATHEMATICA
a[n_] := n! * Sum[(-1)^(n - k) * Binomial[k*n, n], {k, 0, n}]; Array[a, 14, 0] (* Amiram Eldar, Nov 19 2021 *)
PROG
(PARI) a(n) = sum(j=0, n, (-1)^(n-j)*prod(k=(j-1)*n+1, j*n, k));
CROSSREFS
Sequence in context: A000591 A131312 A055733 * A203774 A024136 A222851
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 19 2021
STATUS
approved