login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349483
Length of cycle reached when iterating the mapping x-> n*A035116(x) on 1.
1
1, 2, 2, 2, 4, 2, 5, 2, 2, 7, 2, 1, 2, 5, 6, 1, 2, 2, 2, 3, 2, 2, 2, 1, 1, 2, 4, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 2, 1, 3, 2, 4, 2, 1, 3, 2, 2, 4, 3, 6, 1, 1, 2, 2, 3, 3, 1, 2, 2, 4, 2, 2, 1, 3, 3, 3, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 2, 8, 1, 2, 2, 3, 3, 2, 1, 3, 2, 3, 1, 1, 1, 2, 3, 1, 2, 4, 1, 2
OFFSET
1,2
COMMENTS
The terms 1-25 all appear below 10^8; the last of these are a(12545280) = 21, a(12684672) = 24, and a(96940800) = 25. - Charles R Greathouse IV, Nov 23 2021
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
For n = 2, 1 --> 2 --> 8 --> 32 --> 72 --> 288 --> 648 --> 800 --> 648. The cycle reached has just two terms: 648 and 800. Therefore, a(2) = 2.
MATHEMATICA
a[n_] := Module[{s = NestWhileList[n*DivisorSigma[0, #]^2 &, 1, UnsameQ, All]}, Differences[Position[s, s[[-1]]]][[1, 1]]]; Array[a, 100] (* Amiram Eldar, Nov 19 2021 *)
PROG
(PARI) brent(f, x)=my(pow=1, lam=1, tortoise=x, hare=f(x)); while(tortoise!=hare, if(pow==lam, tortoise=hare; pow<<=1; lam=0); hare=f(hare); lam++); lam
a(n)=brent(k->n*numdiv(k)^2, 1) \\ Charles R Greathouse IV, Nov 19 2021
CROSSREFS
Cf. A035116.
Similar sequences: A349410.
Sequence in context: A173738 A135838 A279966 * A114349 A186749 A133265
KEYWORD
nonn
AUTHOR
Tejo Vrush, Nov 19 2021
STATUS
approved