login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349484
Niven numbers whose arithmetic derivative is also a Niven number (A005349).
1
2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 20, 21, 27, 36, 48, 50, 54, 72, 81, 100, 108, 111, 112, 135, 153, 156, 180, 192, 201, 209, 210, 216, 224, 225, 230, 243, 280, 288, 306, 324, 336, 351, 364, 378, 392, 400, 405, 407, 420, 432, 441, 480, 481, 486, 500, 504, 511, 512
OFFSET
1,1
COMMENTS
The sequence is infinite because the numbers of the form m = 2*10^(10^k), k >= 1, are terms. Indeed, m is a Niven number, m' = 10^(10^k) + 2*10^k*10^(10^k - 1)*7 = 10^(10^k - 1)*(10 + 140*10^k) = 10^(10^k)*(1 + 14*10^k), digsum(m') = 6 and m' is divisible by 6, so it is a Niven number.
EXAMPLE
2 = A005349(2) and 2' = 1 = A005349(1), so 2 is a term.
18 = A005349(12) and 18' = 21 = A005349(14), so 18 is a term.
MATHEMATICA
nivenQ[n_] := Divisible[n, Plus @@ IntegerDigits[n]]; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[2, 512], And @@ nivenQ /@ {#, d[#]} &] (* Amiram Eldar, Nov 20 2021 *)
PROG
(Magma) f:=func<n |n le 1 select 0 else n*(&+[Factorisation(n)[i][2] / Factorisation(n)[i][1]: i in [1..#Factorisation(n)]])>; a:=[]; niven:=func<n|n mod &+Intseq(n) eq 0>; [n:n in [2..520]|niven(n) and niven(Floor(f(n)))];
CROSSREFS
Cf. A002808, A005349 (Niven numbers), A003415 (arithmetic derivative).
Sequence in context: A032345 A023765 A032906 * A075905 A321767 A377477
KEYWORD
nonn,base
AUTHOR
Marius A. Burtea, Nov 20 2021
STATUS
approved