login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033935
Sum of squares of coefficients in full expansion of (z1+z2+...+zn)^n.
8
1, 1, 6, 93, 2716, 127905, 8848236, 844691407, 106391894904, 17091486402849, 3410496772665940, 827540233598615691, 239946160014513220896, 81932406267721802925925, 32541656017173091541743368, 14874686717916861528415671285, 7753005946480818323895940923376
OFFSET
0,3
COMMENTS
Two samples of size n are taken from an urn containing infinitely many marbles of n distinct colors. a(n)/n^(2*n) is the probability that the two samples match. That is, they contain the same number of each color of marbles without regard to order. - Geoffrey Critzer, Apr 19 2014
LINKS
FORMULA
a(n) is coefficient of x^n in expansion of n!^2*(1 + x/1!^2 + x^2/2!^2 + x^3/3!^2 + ... + x^n/n!^2)^n. - Vladeta Jovovic, Jun 09 2000
a(n) ~ c * d^n * (n!)^2 / sqrt(n), where d = 2.1024237701057210364324371415246345951600138303179762223318873762632384990..., c = 0.487465475752598098146353111500372156824276600165331887960705498284416... - Vaclav Kotesovec, Jul 29 2014, updated Jul 10 2023
a(n) = n!^2 * [z^n] hypergeom([], [1], z)^n. - Peter Luschny, May 31 2017
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
end:
a:= n-> b(n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 21 2014
A033935:= proc(n) series(hypergeom([], [1], z)^n, z=0, n+1): n!^2*coeff(%, z, n) end: seq(A033935(n), n=0..16); # Peter Luschny, May 31 2017
MATHEMATICA
Table[nn=n; n!^2 Coefficient[Series[(Sum[x^k/k!^2, {k, 0, nn}])^n, {x, 0, nn}], x^n], {n, 1, 20}] (* Geoffrey Critzer, Apr 19 2014 *)
Flatten[{1, Table[n!^2*Coefficient[Series[BesselI[0, 2*Sqrt[x]]^n, {x, 0, n}], x^n], {n, 1, 20}]}] (* Vaclav Kotesovec, Jul 29 2014 *)
Table[SeriesCoefficient[HypergeometricPFQ[{}, {1}, x]^n, {x, 0, n}] n!^2, {n, 0, 16}] (* Peter Luschny, May 31 2017 *)
CROSSREFS
Column k=2 of A245397.
Main diagonal of A287316.
Cf. A364116.
Sequence in context: A328427 A103212 A359928 * A218682 A078103 A221525
KEYWORD
nonn,easy
AUTHOR
Warren D. Smith, Dec 11 1999
EXTENSIONS
More terms from James A. Sellers, Jun 01 2000 and Vladeta Jovovic, Jun 05 2000
a(0)=1 inserted by Alois P. Heinz, Jul 21 2014
STATUS
approved