login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359928
a(n) = coefficient of x^n*y^(n+1)/n! in (1/2) * log( Sum_{n>=0} (n^2 + 3*n*y + 2*y^2)^n * x^n/n! ).
4
1, 6, 93, 2448, 92505, 4589568, 283008621, 20903023872, 1800986581521, 177455695795200, 19690717755237309, 2430478269127673856, 330392930155527272553, 49053029845102480576512, 7898602773992589665290125, 1371137549213022697047785472, 255275516636592894833768588961
OFFSET
1,2
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=1} a(n) * x^n/n! may be defined by the following.
(1) a(n) = [x^n*y^(n+1)/n!] (1/2)*log( Sum_{n>=0} (n + y)^n*(n + 2*y)^n *x^n/n! ).
(2) A(x) = lim_{N->oo} (1/N)*log( Sum_{n>=0} (N + n)^n*(N + 2*n)^n * (x/N)^n/n! ).
a(n) ~ c * d^n * n! / n^(5/2), where d = 12.7029497597456784744445675253711147535742245945208995646083627... and c = 0.15440395598650604464793307483290467035754174771895993579108... - Vaclav Kotesovec, Mar 21 2024
EXAMPLE
E.g.f.: A(x) = x + 6*x^2/2! + 93*x^3/3! + 2448*x^4/4! + 92505*x^5/5! + 4589568*x^6/6! + 283008621*x^7/7! + 20903023872*x^8/8! + 1800986581521*x^9/9! + 177455695795200*x^10/10! + ...
Exponentiation yields the e.g.f. of A319147:
exp(A(x)) = 1 + x + 7*x^2/2! + 112*x^3/3! + 2965*x^4/4! + 111856*x^5/5! + 5528419*x^6/6! + 339433984*x^7/7! + 24965493865*x^8/8! + 2142654088960*x^9/9! + ... + A319147(n)*x^n/n! + ...
which equals the limit
exp(A(x)) = lim_{N->oo} [ Sum_{n>=0} (N^2 + 3*N*n + 2*n^2)^n * (x/N)^n/n! ]^(1/N).
RELATED SEQUENCES.
a(n) is divisible by n where a(n)/n begins:
[1, 3, 31, 612, 18501, 764928, 40429803, 2612877984, 200109620169, ...].
PROG
(PARI) {a(n) = (1/2) * n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^m*(m + 2*y)^m *x^m/m! ) +x*O(x^n) ), n, x), n+1, y)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 20 2023
STATUS
approved