login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218682
E.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n/n! * A(n*x)^n.
3
1, 1, 6, 93, 2944, 167685, 16037376, 2481455137, 609371157312, 235171042752105, 141778378915235200, 132871933962627534741, 192678752056300896500544, 430404642833695770472870573, 1474859949355240010986735351872, 7723091241704594423130951106689225
OFFSET
0,3
LINKS
EXAMPLE
E.g.f.: A(x) = 1 + x + 6*x^2/2! + 93*x^3/3! + 2944*x^4/4! + 167685*x^5/5! +...
where
A(x) = 1 + x*A(x) + 2^2*x^2*A(2*x)^2/2! + 3^3*x^3*A(3*x)^3/3! + 4^4*x^4*A(4*x)^4/4! +...
MATHEMATICA
m = 16; A[_] = 0;
Do[A[x_] = Sum[If[n == 0, 1, n^n x^n/n! A[n x]^n], {n, 0, m}] + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] * Range[0, m - 1]! (* Jean-François Alcover, Oct 03 2019 *)
PROG
(PARI) {a(n)=local(A=1); for(i=1, n, A=sum(k=0, n, k^k*x^k/k!*subst(A, x, k*x)^k+x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A103212 A359928 A033935 * A078103 A221525 A321073
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 05 2012
STATUS
approved