The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218685 O.g.f.: Sum_{n>=0} (1+n^3*x)^n * x^n/n! * exp(-(1+n^3*x)*x). 3
 1, 0, 1, 6, 34, 270, 3415, 31230, 681026, 6949920, 230637870, 2546120514, 119281951006, 1394371349490, 87612425583018, 1069010047029672, 86763885548985810, 1094149501538197236, 111443560982774811439, 1442387644419293694144, 180179254059921915232864 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Compare the o.g.f. to the curious identity: 1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-(1+n*x)*x). LINKS Table of n, a(n) for n=0..20. EXAMPLE O.g.f: A(x) = 1 + x^2 + 6*x^3 + 34*x^4 + 270*x^5 + 3415*x^6 +... where A(x) = exp(-x) + (1+x)*x*exp(-(1+x)*x) + (1+2^3*x)^2*x^2/2!*exp(-(1+2^3*x)*x) + (1+3^3*x)^3*x^3/3!*exp(-(1+3^3*x)*x) + (1+4^3*x)^4*x^4/4!*exp(-(1+4^3*x)*x) + (1+5^3*x)^5*x^5/5!*exp(-(1+5^3*x)*x) +... simplifies to a power series in x with integer coefficients. PROG (PARI) {a(n)=polcoeff(sum(k=0, n, (1+k^3*x)^k*x^k/k!*exp(-x*(1+k^3*x)+x*O(x^n))), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A218687, A218684, A218686. Sequence in context: A197436 A334787 A302148 * A108432 A355887 A337350 Adjacent sequences: A218682 A218683 A218684 * A218686 A218687 A218688 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 05 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 13 18:16 EDT 2024. Contains 374285 sequences. (Running on oeis4.)