login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218688
Number of ways to linearly arrange the trees over all forests on n labeled nodes.
3
1, 1, 3, 15, 106, 975, 11106, 151501, 2415960, 44221869, 915826600, 21211128411, 544126606992, 15334985416075, 471495297242256, 15719617534811625, 565271886957356416, 21820620411482896089, 900398349688515500160, 39564926462522623540519, 1845034125763359894240000
OFFSET
0,3
LINKS
FORMULA
E.g.f.: 1/(1- T(x) + T(x)^2/2) where T(x) is e.g.f. for A000169.
a(n) = Sum_{m=1..n} A105599(n,m)*m!.
a(n) ~ 4*n^(n-2). - Vaclav Kotesovec, Aug 16 2013
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k^(k-2) * a(n-k). - Ilya Gutkovskiy, Jan 26 2020
MAPLE
T:= -LambertW(-x):
egf:= 1/(1-T+T^2/2):
a:= n-> n! * coeff(series(egf, x, n+1), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 04 2012
MATHEMATICA
nn=20; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Range[0, nn]!CoefficientList[ Series[1/(1-t+t^2/2), {x, 0, nn}], x]
PROG
(PARI) A218688_vec(n, A=List(1))={until(#A>n, listput(A, sum(k=1, #A, binomial(#A, k)*k^(k-2)*A[#A-k+1]))); Vec(A)} \\ M. F. Hasler, Jan 26 2020
CROSSREFS
Cf. A101313.
Sequence in context: A128276 A295124 A107878 * A120016 A349874 A074519
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Nov 04 2012
STATUS
approved