The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218687 O.g.f.: Sum_{n>=0} n^n * (1+n^3*x)^n * x^n/n! * exp(-n*(1+n^3*x)*x). 3
 1, 1, 2, 31, 398, 10476, 296407, 12613297, 592445192, 36797742660, 2524966492661, 212912151736648, 19819138754732997, 2155966497948737905, 259256365067737582615, 35050667748654756208069, 5257919606219599751747894, 858816581875175776426876930 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare the o.g.f. to the curious identity: 1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-(1+n*x)*x). LINKS Table of n, a(n) for n=0..17. EXAMPLE O.g.f: A(x) = 1 + x + 2*x^2 + 31*x^3 + 398*x^4 + 10476*x^5 + 296407*x^6 +... where A(x) = 1 + (1+x)*x*exp(-(1+x)*x) + 2^2*(1+2^3*x)^2*x^2/2!*exp(-2*(1+2^3*x)*x) + 3^3*(1+3^3*x)^3*x^3/3!*exp(-3*(1+3^3*x)*x) + 4^4*(1+4^3*x)^4*x^4/4!*exp(-4*(1+4^3*x)*x) + 5^5*(1+5^3*x)^5*x^5/5!*exp(-5*(1+5^3*x)*x) +... simplifies to a power series in x with integer coefficients. PROG (PARI) {a(n)=polcoeff(sum(k=0, n, k^k*(1+k^3*x)^k*x^k/k!*exp(-k*x*(1+k^3*x)+x*O(x^n))), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A218685, A218686, A218684. Sequence in context: A343415 A156151 A231796 * A071360 A108491 A088104 Adjacent sequences: A218684 A218685 A218686 * A218688 A218689 A218690 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 05 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 15:15 EDT 2024. Contains 375044 sequences. (Running on oeis4.)