login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218689
Sum_{k=0..n} C(n,k)^6*C(n+k,k)^6.
10
1, 65, 93313, 795985985, 8178690000001, 93706344780048065, 1453730786373283012225, 26552497154713885161031745, 513912636558068387176582890625, 10769375530849394271690330588432065, 243282405272735566295972089793676717313, 5763401688773271719278313934033057270226625
OFFSET
0,2
FORMULA
a(n) ~ (1+sqrt(2))^(6*(2n+1))/(2^(17/4)*(Pi*n)^(11/2)*sqrt(3))
Generally, Sum_{k=0..n} C(n,k)^p*C(n+k,k)^p is asymptotic to (1+sqrt(2))^(p*(2*n+1))/(2^(p/2+3/4)*(Pi*n)^(p-1/2)*sqrt(p)) * (1-(2*p-1)/(4*n)+(4*p^2+24*p-19)*sqrt(2)/(96*p*n))
MATHEMATICA
Table[Sum[Binomial[n, k]^6*Binomial[n+k, k]^6, {k, 0, n}], {n, 0, 20}]
CROSSREFS
Cf. A001850 (p=1), A005259 (p=2), A092813 (p=3), A092814 (p=4), A092815 (p=5).
Sequence in context: A242283 A061688 A337808 * A171706 A015072 A015039
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 04 2012
STATUS
approved