login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218686
O.g.f.: Sum_{n>=0} n^n * (1+n^2*x)^n * x^n/n! * exp(-n*(1+n^2*x)*x).
3
1, 1, 2, 15, 107, 1164, 13932, 207527, 3424441, 65365273, 1366815507, 31899555046, 806153628997, 22260455705106, 659196741236329, 21028295211402871, 713819243969142111, 25836118882427921161, 988875977638287049631, 40043648314495526922945
OFFSET
0,3
COMMENTS
Compare the o.g.f. to the curious identity:
1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-(1+n*x)*x).
EXAMPLE
O.g.f: A(x) = 1 + x + 2*x^2 + 15*x^3 + 107*x^4 + 1164*x^5 + 13932*x^6 +...
where
A(x) = 1 + (1+x)*x*exp(-(1+x)*x) + 2^2*(1+2^2*x)^2*x^2/2!*exp(-2*(1+2^2*x)*x) + 3^3*(1+3^2*x)^3*x^3/3!*exp(-3*(1+3^2*x)*x) + 4^4*(1+4^2*x)^4*x^4/4!*exp(-4*(1+4^2*x)*x) + 5^5*(1+5^2*x)^5*x^5/5!*exp(-5*(1+5^2*x)*x) +...
simplifies to a power series in x with integer coefficients.
PROG
(PARI) {a(n)=polcoeff(sum(k=0, n, k^k*(1+k^2*x)^k*x^k/k!*exp(-k*x*(1+k^2*x)+x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 05 2012
STATUS
approved