login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A218683 E.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n/n! * A(n*x). 2
1, 1, 6, 69, 1432, 52065, 3202176, 324172597, 53099867136, 13888279032129, 5736880791449920, 3710252136325373661, 3729910949734728414624, 5792791811385586637686849, 13826260704559808415109532256, 50488064853691920270244556417445 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..15.

FORMULA

a(n) = Sum_{k=0..n-1} binomial(n,k) * (n-k)^n * a(k) for n>0 with a(0)=1.

EXAMPLE

E.g.f.: A(x) = 1 + x + 6*x^2/2! + 69*x^3/3! + 1432*x^4/4! + 52065*x^5/5! +...

where

A(x) = 1 + x*A(x) + 2^2*x^2*A(2*x)/2! + 3^3*x^3*A(3*x)/3! + 4^4*x^4*A(4*x)/4! +...

which leads to the recurrence illustrated by:

a(1) = 1*1^1*(1) = 1;

a(2) = 1*2^2*(1) + 2*1^2*(1) = 6;

a(3) = 1*3^3*(1) + 3*2^3*(1) + 3*1^3*(6) = 69;

a(4) = 1*4^4*(1) + 4*3^4*(1) + 6*2^4*(6) + 4*1^4*(69) = 1432;

a(5) = 1*5^5*(1) + 5*4^5*(1) + 10*3^5*(6) + 10*2^5*(69) + 5*1^5*(1432) = 52065.

PROG

(PARI) {a(n)=local(A=1); for(i=1, n, A=sum(k=0, n, k^k*x^k/k!*subst(A, x, k*x)+x*O(x^n))); n!*polcoeff(A, n)}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n)=if(n==0, 1, sum(k=0, n-1, binomial(n, k)*(n-k)^n*a(k)))}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A125281, A218682.

Sequence in context: A305110 A235328 A296783 * A188406 A048708 A286527

Adjacent sequences:  A218680 A218681 A218682 * A218684 A218685 A218686

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 05 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 01:41 EDT 2021. Contains 346269 sequences. (Running on oeis4.)