OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n-1} binomial(n,k) * (n-k)^n * a(k) for n>0 with a(0)=1.
EXAMPLE
E.g.f.: A(x) = 1 + x + 6*x^2/2! + 69*x^3/3! + 1432*x^4/4! + 52065*x^5/5! +...
where
A(x) = 1 + x*A(x) + 2^2*x^2*A(2*x)/2! + 3^3*x^3*A(3*x)/3! + 4^4*x^4*A(4*x)/4! +...
which leads to the recurrence illustrated by:
a(1) = 1*1^1*(1) = 1;
a(2) = 1*2^2*(1) + 2*1^2*(1) = 6;
a(3) = 1*3^3*(1) + 3*2^3*(1) + 3*1^3*(6) = 69;
a(4) = 1*4^4*(1) + 4*3^4*(1) + 6*2^4*(6) + 4*1^4*(69) = 1432;
a(5) = 1*5^5*(1) + 5*4^5*(1) + 10*3^5*(6) + 10*2^5*(69) + 5*1^5*(1432) = 52065.
PROG
(PARI) {a(n)=local(A=1); for(i=1, n, A=sum(k=0, n, k^k*x^k/k!*subst(A, x, k*x)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=if(n==0, 1, sum(k=0, n-1, binomial(n, k)*(n-k)^n*a(k)))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 05 2012
STATUS
approved